Skip to main content

Advertisement

Log in

Decline in prefrontal catecholamine synthesis explains age-related changes in cognitive speed beyond regional grey matter atrophy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Age-related decline in cognitive speed has been associated with prefrontal dopamine D1 receptor availability, but the contribution of presynaptic dopamine and noradrenaline innervation to age-related changes in cognition is unknown.

Methods

In a group of 16 healthy participants aged 22–61 years, we used PET and the radioligand FDOPA to measure catecholamine synthesis capacity (K in app; millilitres per gram per minute) and the digit symbol substitution test to measure cognitive speed, a component of fluid IQ.

Results

Cognitive speed was associated with the magnitude of K in app in the prefrontal cortex (p < 0.0005). Both cognitive speed (p = 0.003) and FDOPA K in app (p < 0.0005) declined with age, both in a standard voxel-wise analysis and in a volume-of-interest analysis with partial volume correction, and the correlation between cognitive speed and K in app remained significant beyond the effects of age (p = 0.047). MR-based segmentation revealed that these age-related declines were not attributable to age-related alterations in grey matter density.

Conclusion

Our findings indicate that age-related changes in the capacity of the prefrontal cortex to synthesize catecholamines, irrespective of cortical atrophy, may underlie age-related decline in cognitive speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vernaleken I, Buchholz HG, Kumakura Y, Siessmeier T, Stoeter P, Bartenstein P, et al. 'Prefrontal' cognitive performance of healthy subjects positively correlates with cerebral FDOPA influx: an exploratory [18F]-fluoro-L-DOPA-PET investigation. Hum Brain Mapp. 2007;28:931–9. doi:10.1002/hbm.20325.

    Article  PubMed  Google Scholar 

  2. Braskie MN, Wilcox CE, Landau SM, O'Neil JP, Baker SL, Madison CM, et al. Relationship of striatal dopamine synthesis capacity to age and cognition. J Neurosci. 2008;28:14320–8. doi:10.1523/JNEUROSCI.3729-08.2008.

    Article  PubMed  CAS  Google Scholar 

  3. Cools R, Gibbs SE, Miyakawa A, Jagust W, D'Esposito M. Working memory capacity predicts dopamine synthesis capacity in the human striatum. J Neurosci. 2008;28:1208–12. doi:10.1523/JNEUROSCI.4475-07.2008.

    Article  PubMed  CAS  Google Scholar 

  4. Jokinen P, Bruck A, Aalto S, Forsback S, Parkkola R, Rinne JO. Impaired cognitive performance in Parkinson's disease is related to caudate dopaminergic hypofunction and hippocampal atrophy. Parkinsonism Relat Disord. 2009;15:88–93. doi:10.1016/j.parkreldis.2008.03.005.

    Article  PubMed  Google Scholar 

  5. Salthouse TA. Cognition and context. Sci. 1992;257:982–3. doi:10.1126/science.257.5072.982-a.

    Article  CAS  Google Scholar 

  6. Backman L, Ginovart N, Dixon RA, Wahlin TB, Wahlin A, Halldin C, et al. Age-related cognitive deficits mediated by changes in the striatal dopamine system. Am J Psychiatry. 2000;157:635–7.

    Article  PubMed  CAS  Google Scholar 

  7. Kumakura Y, Vernaleken I, Buchholz HG, Borghammer P, Danielsen E, Grunder G, et al. Age-dependent decline of steady state dopamine storage capacity of human brain: an FDOPA PET study. Neurobiol Aging. 2010;31:447–63. doi:10.1016/j.neurobiolaging.2008.05.005.

    Article  PubMed  CAS  Google Scholar 

  8. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15:1676–89. doi:10.1093/cercor/bhi044.

    Article  PubMed  Google Scholar 

  9. First MB, Spitzer RL, Gibbon M, Williams JB. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. (SCID-I/P). New York: Biometrics Research, New York State Psychiatric Institute, November 2002.

  10. Morgan SF, Wheelock J. Comparability of WAIS-R Digit Symbol and the Symbol Digit Modalities Test. Percept Mot Skills. 1995;80:631–4.

    Article  PubMed  CAS  Google Scholar 

  11. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839–51. doi:10.1016/j.neuroimage.2005.02.018.

    Article  PubMed  Google Scholar 

  12. Svarer C, Madsen K, Hasselbalch SG, Pinborg LH, Haugbol S, Frokjaer VG, et al. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage. 2005;24:969–79. doi:10.1016/j.neuroimage.2004.10.017.

    Article  PubMed  Google Scholar 

  13. Kumakura Y, Cumming P. PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist. 2009;15:635–50. doi:10.1177/1073858409338217.

    Article  PubMed  CAS  Google Scholar 

  14. Klostermann EC, Braskie MN, Landau SM, O'Neil JP, Jagust WJ. Dopamine and frontostriatal networks in cognitive aging. Neurobiol Aging. 2012;33(623):e15–24. doi:10.1016/j.neurobiolaging.2011.03.002.

    PubMed  Google Scholar 

  15. Brown WD, Taylor MD, Roberts AD, Oakes TR, Schueller MJ, Holden JE, et al. FluoroDOPA PET shows the nondopaminergic as well as dopaminergic destinations of levodopa. Neurology. 1999;53:1212–8.

    Article  PubMed  CAS  Google Scholar 

  16. Kumakura Y, Danielsen EH, Gjedde A, Vernaleken I, Buchholz HG, Heinz A, et al. Elevated [(18)F]FDOPA utilization in the periaqueductal gray and medial nucleus accumbens of patients with early Parkinson's disease. Neuroimage. 2010;49:2933–9. doi:10.1016/j.neuroimage.2009.11.035.

    Article  PubMed  CAS  Google Scholar 

  17. Pavese N, Simpson BS, Metta V, Ramlackhansingh A, Chaudhuri KR, Brooks DJ. [18F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [18F]FDOPA and [11C]DASB PET study in Parkinson's disease. Neuroimage. 2012;59:1080–4. doi:10.1016/j.neuroimage.2011.09.034.

    Article  PubMed  CAS  Google Scholar 

  18. Cumming P, Ljubic-Thibal V, Laliberte C, Diksic M. The effect of unilateral neurotoxic lesions to serotonin fibres in the medial forebrain bundle on the metabolism of [3H]DOPA in the telencephalon of the living rat. Brain Res. 1997;747:60–9.

    Article  PubMed  CAS  Google Scholar 

  19. Doudet DJ, Rosa-Neto P, Munk OL, Ruth TJ, Jivan S, Cumming P. Effect of age on markers for monoaminergic neurons of normal and MPTP-lesioned rhesus monkeys: a multi-tracer PET study. Neuroimage. 2006;30:26–35. doi:10.1016/j.neuroimage.2005.09.044.

    Article  PubMed  Google Scholar 

  20. Devoto P, Flore G. On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons? Curr Neuropharmacol. 2006;4:115–25.

    Article  PubMed  CAS  Google Scholar 

  21. Bäckman L, Karlsson S, Fischer H, Karlsson P, Brehmer Y, Rieckmann A, et al. Dopamine D(1) receptors and age differences in brain activation during working memory. Neurobiol Aging. 2011;32:1849–56. doi:10.1016/j.neurobiolaging.2009.10.018

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank R. Lorenz, M. Keitel, A. Goldmann and B. Neumann for assistance with data acquisition; N. Fonyuy and E. Jaeschke for assistance with PET; and R. Michel and A. Gerhardt for radiochemical analysis. This study was supported by the German Science Foundation (DFG HE2597/4-3&7-3 and DFG Exc257), by the German Ministry for Education and Research (BMBF 01QG87164 and 01GS08195) and by a MaxNetAging award to M.A.R.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kalbitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalbitzer, J., Deserno, L., Schlagenhauf, F. et al. Decline in prefrontal catecholamine synthesis explains age-related changes in cognitive speed beyond regional grey matter atrophy. Eur J Nucl Med Mol Imaging 39, 1462–1466 (2012). https://doi.org/10.1007/s00259-012-2162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2162-4

Keywords

Navigation