Skip to main content

Advertisement

Log in

Neuronal properties of pyramidal cells in lateral prefrontal cortex of the aging rhesus monkey brain are associated with performance deficits on spatial working memory but not executive function

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Age-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood. The prefrontal cortex (PFC) is known to mediate EF and WM and is an area that shows a vulnerability to age-related alterations in neuronal morphology. In the current study, we show that performance on EF and WM tasks exhibited significant changes with age, and these impairments correlate with changes in biophysical properties of layer 3 (L3) pyramidal neurons in lateral LPFC (LPFC). Specifically, there was a significant age-related increase in excitability of L3 LPFC pyramidal neurons, consistent with previous studies. Further, this age-related hyperexcitability of LPFC neurons was significantly correlated with age-related decline on a task of WM, but not an EF task. The current study characterizes age-related performance on tasks of WM and EF and provides insight into the neural substrates that may underlie changes in both WM and EF with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data were generated at Boston University. Derived data supporting the findings of this study are available from the corresponding author [TLM] on request.

References

  1. Lezak MD, Howieson DB, Loring DW, Fischer JS. Neuropsychological assessment. USA: Oxford University Press; 2004.

    Google Scholar 

  2. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.

    Article  PubMed  Google Scholar 

  3. Baddeley AD, Hitch G, Bower GH. The psychology of learning and motivation. 1974.

  4. Park DC, et al. Models of visuospatial and verbal memory across the adult life span. Psychol Aging. 2002;17:299–320.

    Article  PubMed  Google Scholar 

  5. Hertzog C, Dixon RA, Hultsch DF, MacDonald SW. Latent change models of adult cognition: are changes in processing speed and working memory associated with changes in episodic memory? Psychol Aging. 2003;18:755–69.

    Article  PubMed  Google Scholar 

  6. Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nat Neurosci. 2004;7:75–9.

    Article  CAS  PubMed  Google Scholar 

  7. Brockmole JR, Logie RH. Age-related change in visual working memory: a study of 55,753 participants aged 8–75. Front Psychol. 2013;4:12.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moore TL, Killiany RJ, Herndon JG, Rosene DL, Moss MB. Impairment in abstraction and set shifting in aged rhesus monkeys. Neurobiol Aging. 2003;24:125–34.

    Article  PubMed  Google Scholar 

  9. Moore TL, Killiany RJ, Herndon JG, Rosene DL, Moss MB. Executive system dysfunction occurs as early as middle-age in the rhesus monkey. Neurobiol Aging. 2006;27:1484–93.

    Article  PubMed  Google Scholar 

  10. Moss M, Moore T, Schettler S, Killiany R, Rosene D. Successful vs. unsuccessful aging in the rhesus monkey. in Brain aging: models, methods and mechanisms (ed. D.R. Riddle). CRC Press, Boca Raton; 2007. p. 21–38.

  11. Albert, M. Age related changes in cognitive function. in Geriatric Neuropsychology(ed. M.a.M. Albert, MB). Guilford Press, New York;1984.

  12. Albert M, Blacker D, Moss MB, Tanzi R, McArdle JJ. Longitudinal change in cognitive performance among individuals with mild cognitive impairment. Neuropsychology. 2007;21:158–69.

    Article  PubMed  Google Scholar 

  13. Blacker D, et al. Neuropsychological measures in normal individuals that predict subsequent cognitive decline. Arch Neurol. 2007;64:862–71.

    Article  PubMed  Google Scholar 

  14. Herndon JG, Moss MB, Rosene DL, Killiany RJ. Patterns of cognitive decline in aged rhesus monkeys. Behav Brain Res. 1997;87:25–34.

    Article  CAS  PubMed  Google Scholar 

  15. Lai ZC, Moss MB, Killiany RJ, Rosene DL, Herndon JG. Executive system dysfunction in the aged monkey: spatial and object reversal learning. Neurobiol Aging. 1995;16:947–54.

    Article  CAS  PubMed  Google Scholar 

  16. Bachevalier J. Behavioral changes in aged rhesus monkeys. Neurobiol Aging. 1993;14:619–21.

    Article  CAS  PubMed  Google Scholar 

  17. Moss MB, Killiany RJ, Lai ZC, Rosene DL, Herndon JG. Recognition memory span in rhesus monkeys of advanced age. Neurobiol Aging. 1997;18:13–9.

    Article  CAS  PubMed  Google Scholar 

  18. Killiany RJ, Moss MB, Rosene DL, Herndon J. Recognition memory function in early senescent rhesus monkeys. Psychobiology. 2000;28:45–56.

    Article  Google Scholar 

  19. Moore TL, et al. Cognitive impairment in aged rhesus monkeys associated with monoamine receptors in the prefrontal cortex. Behav Brain Res. 2005;160:208–21.

    Article  CAS  PubMed  Google Scholar 

  20. Moss MB, Rosene DL, Peters A. Effects of aging on visual recognition memory in the rhesus monkey. Neurobiol Aging. 1988;9:495–502.

    Article  CAS  PubMed  Google Scholar 

  21. Gamboz N, Borella E, Brandimonte MA. The role of switching, inhibition and working memory in older adults’ performance in the Wisconsin Card Sorting Test. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2009;16:260–84.

    Article  PubMed  Google Scholar 

  22. Tiernan BN, Mutter SA. The effects of age and uncertainty in the Stroop priming task. Psychol Aging. 2021;36:452–62.

    Article  PubMed  Google Scholar 

  23. Peters A, Leahu D, Moss MB, McNally KJ. The effects of aging on area 46 of the frontal cortex of the rhesus monkey. Cereb Cortex. 1994;4:621–35.

    Article  CAS  PubMed  Google Scholar 

  24. Stonebarger GA, et al. Amyloidosis increase is not attenuated by long-term calorie restriction or related to neuron density in the prefrontal cortex of extremely aged rhesus macaques. Geroscience. 2020;42:1733–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grady CL. Brain imaging and age-related changes in cognition. Exp Gerontol. 1998;33:661–73.

    Article  CAS  PubMed  Google Scholar 

  26. Raz N, et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex. 1997;7:268–82.

    Article  CAS  PubMed  Google Scholar 

  27. West RL. An application of prefrontal cortex function theory to cognitive aging. Psychol Bull. 1996;120:272–92.

    Article  CAS  PubMed  Google Scholar 

  28. West, R. In defense of the frontal lobe hypothesis of cognitive aging. J Int Neuropsychol Soc. 2000;6:727–729; discussion 730.

  29. Makris N, et al. Frontal connections and cognitive changes in normal aging rhesus monkeys: a DTI study. Neurobiol Aging. 2007;28:1556–67.

    Article  PubMed  Google Scholar 

  30. Arnsten AF, Goldman-Rakic PS. Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging. 1990;11:583–90.

    Article  CAS  PubMed  Google Scholar 

  31. Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology. 1994;116:143–51.

    Article  CAS  PubMed  Google Scholar 

  32. Arnsten AF, Jentsch JD. The alpha-1 adrenergic agonist, cirazoline, impairs spatial working memory performance in aged monkeys. Pharmacol Biochem Behav. 1997;58:55–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sawaguchi T, Matsumura M, Kubota K. Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol. 1990;63:1401–12.

    Article  CAS  PubMed  Google Scholar 

  34. Bowley MP, Cabral H, Rosene DL, Peters A. Age changes in myelinated nerve fibers of the cingulate bundle and corpus callosum in the rhesus monkey. J Comp Neurol. 2010;518:3046–64.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wisco JJ, et al. An MRI study of age-related white and gray matter volume changes in the rhesus monkey. Neurobiol Aging. 2008;29:1563–75.

    Article  PubMed  Google Scholar 

  36. Luebke J, Barbas H, Peters A. Effects of normal aging on prefrontal area 46 in the rhesus monkey. Brain Res Rev. 2010;62:212–32.

    Article  PubMed  Google Scholar 

  37. Dickstein DL, et al. Changes in the structural complexity of the aged brain. Aging Cell. 2007;6:275–84.

    Article  CAS  PubMed  Google Scholar 

  38. Dickstein DL, Weaver CM, Luebke JI, Hof PR. Dendritic spine changes associated with normal aging. Neuroscience. 2013;251:21–32.

    Article  CAS  PubMed  Google Scholar 

  39. Chang YM, Rosene DL, Killiany RJ, Mangiamele LA, Luebke JI. Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cereb Cortex. 2005;15:409–18.

    Article  PubMed  Google Scholar 

  40. Chang W, Weaver CM, Medalla M, Moore TL, Luebke JI. Age-related alterations to working memory and to pyramidal neurons in the prefrontal cortex of rhesus monkeys begin in early middle-age and are partially ameliorated by dietary curcumin. Neurobiol Aging. 2022;109:113–24.

    Article  CAS  PubMed  Google Scholar 

  41. Coskren PJ, et al. Functional consequences of age-related morphologic changes in pyramidal cells in the prefrontal cortex of the rhesus monkey. J Comput Neurosci. 2015;38:263–83.

    Article  PubMed  Google Scholar 

  42. Luebke JI, Chang YM, Moore TL, Rosene DL. Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience. 2004;125:277–88.

    Article  CAS  PubMed  Google Scholar 

  43. Luebke JI, Chang YM. Effects of aging on the electrophysiological properties of layer 5 pyramidal cells in the monkey prefrontal cortex. Neuroscience. 2007;150:556–62.

    Article  CAS  PubMed  Google Scholar 

  44. Luebke JI, Amatrudo JM. Age-related increase of sI(AHP) in prefrontal pyramidal cells of monkeys: relationship to cognition. Neurobiol Aging. 2012;33:1085–95.

    Article  CAS  PubMed  Google Scholar 

  45. Peters A, Sethares C, Luebke JI. Synapses are lost during aging in the primate prefrontal cortex. Neuroscience. 2008;152:970–81.

    Article  CAS  PubMed  Google Scholar 

  46. Crimins JL, et al. Diverse synaptic distributions of G protein-coupled estrogen receptor 1 in monkey prefrontal cortex with aging and menopause. Cereb Cortex. 2017;27:2022–33.

    PubMed  Google Scholar 

  47. Duan H, et al. Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex. 2003;13:950–61.

    Article  PubMed  Google Scholar 

  48. Dumitriu D, et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci. 2010;30:7507–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hara Y, Rapp PR, Morrison JH. Neuronal and morphological bases of cognitive decline in aged rhesus monkeys. Age (Dordr). 2012;34:1051–73.

    Article  PubMed  Google Scholar 

  50. Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997;278:412–9.

    Article  CAS  PubMed  Google Scholar 

  51. Young ME, Ohm DT, Dumitriu D, Rapp PR, Morrison JH. Differential effects of aging on dendritic spines in visual cortex and prefrontal cortex of the rhesus monkey. Neuroscience. 2014;274:33–43.

    Article  CAS  PubMed  Google Scholar 

  52. Amatrudo JM, et al. Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices. J Neurosci. 2012;32:13644–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peters A, et al. Neurobiological bases of age-related cognitive decline in the rhesus monkey. J Neuropathol Exp Neurol. 1996;55:861–74.

    Article  CAS  PubMed  Google Scholar 

  54. Peters A, Moss MB, Sethares C. Effects of aging on myelinated nerve fibers in monkey primary visual cortex. J Comp Neurol. 2000;419:364–76.

    Article  CAS  PubMed  Google Scholar 

  55. Peters A, Sethares C. Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol. 2002;442:277–91.

    Article  PubMed  Google Scholar 

  56. Luebke JI, Amatrudo JM. Age-related increase of sIAHP in prefrontal pyramidal cells of monkeys: relationship to cognition. Neurobiol Aging. 2012;33:1085–95.

    Article  CAS  PubMed  Google Scholar 

  57. Ibanez S, Luebke JI, Chang W, Draguljic D, Weaver CM. Network models predict that pyramidal neuron hyperexcitability and synapse loss in the dlPFC lead to age-related spatial working memory impairment in rhesus monkeys. Front Comput Neurosci. 2019;13:89.

    Article  PubMed  Google Scholar 

  58. Moore TL, Killiany RJ, Herndon JG, Rosene DL, Moss MB. A non-human primate test of abstraction and set shifting: an automated adaptation of the Wisconsin Card Sorting Test. J Neurosci Methods. 2005;146:165–73.

    Article  PubMed  Google Scholar 

  59. Tigges J, Gordon T, McClure H, Hall E, Peters A. Survival rate and lifespan of the rhesus monkeys at the Yerkes regional primate research center. Am J Primatol. 1988;15:263–73.

    Article  PubMed  Google Scholar 

  60. Estrada LI, et al. Evaluation of long-term cryostorage of brain tissue sections for quantitative histochemistry. J Histochem Cytochem. 2017;65:153–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rosene DL, Roy NJ, Davis BJ. A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem. 1986;34:1301–15.

    Article  CAS  PubMed  Google Scholar 

  62. Shobin E, et al. Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. Geroscience. 2017;39:199–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Medalla M, Luebke JI. Diversity of glutamatergic synaptic strength in lateral prefrontal versus primary visual cortices in the rhesus monkey. J Neurosci. 2015;35:112–27.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Medalla M, Gilman JP, Wang JY, Luebke JI. Strength and diversity of inhibitory signaling differentiates primate anterior cingulate from lateral prefrontal cortex. J Neurosci. 2017;37:4717–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grafen A, Hails R, Hails R. Modern statistics for the life sciences. Oxford: Oxford University Press; 2002.

    Google Scholar 

  66. Darian-Smith C, Lilak A, Alarcón C. Corticospinal sprouting occurs selectively following dorsal rhizotomy in the macaque monkey. J Comp Neurol. 2013;521:2359–72.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron. 2008;59:1037–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moore TL, et al. Chronic curcumin treatment improves spatial working memory but not recognition memory in middle-aged rhesus monkeys. Geroscience. 2017;39:571–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fristoe NM, Salthouse TA, Woodard JL. Examination of age-related deficits on the Wisconsin Card Sorting Test. Neuropsychology. 1997;11:428–36.

    Article  CAS  PubMed  Google Scholar 

  70. Gunning-Dixon FM, Raz N. Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia. 2003;41:1929–41.

    Article  PubMed  Google Scholar 

  71. Hänninen T, et al. Decline of frontal lobe functions in subjects with age-associated memory impairment. Neurology. 1997;48:148–53.

    Article  PubMed  Google Scholar 

  72. Albert M. Neuropsychological and neurophysiological changes in healthy adult humans across the age range. Neurobiol Aging. 1993;14:623–5.

    Article  CAS  PubMed  Google Scholar 

  73. Kronovsek T, et al. Age-related decline in visuo-spatial working memory is reflected by dorsolateral prefrontal activation and cognitive capabilities. Behav Brain Res. 2021;398:112981.

    Article  CAS  PubMed  Google Scholar 

  74. Dobbs AR, Rule BG. Adult age differences in working memory. Psychol Aging. 1989;4:500–3.

    Article  CAS  PubMed  Google Scholar 

  75. Bo J, Borza V, Seidler RD. Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning. J Neurophysiol. 2009;102:2744–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Salthouse TA. The aging of working memory. Neuropsychology. 1994;8:535–43.

    Article  Google Scholar 

  77. Finch, C.E. The neurobiology of middle-age has arrived. Neurobiol Aging. 2009;30:515–520; discussion 530–533.

  78. Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc. 2010;16:754–60.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Salthouse TA. Continuity of cognitive change across adulthood. Psychon Bull Rev. 2016;23:932–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Singh-Manoux A, et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ. 2012;344:d7622.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Oosterman JM, et al. Assessing mental flexibility: neuroanatomical and neuropsychological correlates of the Trail Making Test in elderly people. Clin Neuropsychol. 2010;24:203–19.

    Article  PubMed  Google Scholar 

  82. Wecker NS, Kramer JH, Hallam BJ, Delis DC. Mental flexibility: age effects on switching. Neuropsychology. 2005;19:345–52.

    Article  PubMed  Google Scholar 

  83. Smith EE, et al. The neural basis of task-switching in working memory: effects of performance and aging. Proc Natl Acad Sci U S A. 2001;98:2095–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Salthouse TA. When does age-related cognitive decline begin? Neurobiol Aging. 2009;30:507–14.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ferreira D, et al. Cognitive variability during middle-age: possible association with neurodegeneration and cognitive reserve. Front Aging Neurosci. 2017;9:188.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Salthouse T. Consequences of age-related cognitive declines. Annu Rev Psychol. 2012;63:201–26.

    Article  PubMed  Google Scholar 

  87. Li KZ, Lindenberger U, Freund AM, Baltes PB. Walking while memorizing: age-related differences in compensatory behavior. Psychol Sci. 2001;12:230–7.

    Article  CAS  PubMed  Google Scholar 

  88. Bachevalier J, Mishkin M. Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res. 1986;20:249–61.

    Article  CAS  PubMed  Google Scholar 

  89. Meunier M, Bachevalier J, Mishkin M. Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia. 1997;35:999–1015.

    Article  CAS  PubMed  Google Scholar 

  90. Mishkin M, Pribram KH. Analysis of the effects of frontal lesions in monkey. II. Variations of delayed response. J Comp Physiol Psychol. 1956;49:36–40.

    Article  CAS  PubMed  Google Scholar 

  91. Mishkin M. Effects of small frontal lesions on delayed alternation in monkeys. J Neurophysiol. 1957;20:615–22.

    Article  CAS  PubMed  Google Scholar 

  92. Rosvold HE, Szwarcbart MK, Mirsky AF, Mishkin M. The effect of frontal-lobe damage on delayed response performance in chimpanzees. J Comp Physiol Psychol. 1961;54:368–74.

    Article  CAS  PubMed  Google Scholar 

  93. Moore TL, Schettler SP, Killiany RJ, Rosene DL, Moss MB. Effects on executive function following damage to the prefrontal cortex in the rhesus monkey (Macaca mulatta). Behav Neurosci. 2009;123:231–41.

    Article  PubMed  Google Scholar 

  94. Moore TL, Schettler SP, Killiany RJ, Rosene DL, Moss MB. Impairment in delayed nonmatching to sample following lesions of dorsal prefrontal cortex. Behav Neurosci. 2012;126:772–80.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Asaad WF, Rainer G, Miller EK. Task-specific neural activity in the primate prefrontal cortex. J Neurophysiol. 2000;84:451–9.

    Article  CAS  PubMed  Google Scholar 

  96. Dias R, Robbins TW, Roberts AC. Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci. 1996;110:872–86.

    Article  CAS  PubMed  Google Scholar 

  97. Goldman PS, Rosvold HE. Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp Neurol. 1970;27:291–304.

    Article  CAS  PubMed  Google Scholar 

  98. Goldman PS, Rosvold HE, Vest B, Galkin TW. Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. J Comp Physiol Psychol. 1971;77:212–20.

    Article  CAS  PubMed  Google Scholar 

  99. Passingham R. Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta). Brain Res. 1975;92:89–102.

    Article  CAS  PubMed  Google Scholar 

  100. Petrides M. The role of the mid-dorsolateral prefrontal cortex in working memory. Exp Brain Res. 2000;133:44–54.

    Article  CAS  PubMed  Google Scholar 

  101. Smith ML, Milner B. Differential effects of frontal-lobe lesions on cognitive estimation and spatial memory. Neuropsychologia. 1984;22:697–705.

    Article  CAS  PubMed  Google Scholar 

  102. Milner B. Aspects of human frontal lobe function.Adv Neurol. 1995;66:67–81; discussion 81–64.

  103. Roca M, et al. Executive function and fluid intelligence after frontal lobe lesions. Brain. 2010;133:234–47.

    Article  PubMed  Google Scholar 

  104. Jones DT, Graff-Radford J. Executive dysfunction and the prefrontal cortex. Continuum (Minneap Minn). 2021;27:1586–601.

    PubMed  Google Scholar 

  105. Curtis CE, D’Esposito M. The effects of prefrontal lesions on working memory performance and theory. Cogn Affect Behav Neurosci. 2004;4:528–39.

    Article  PubMed  Google Scholar 

  106. Müller NG, Knight RT. The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience. 2006;139:51–8.

    Article  PubMed  Google Scholar 

  107. Funahashi S. Working memory in the prefrontal cortex. Brain Sci . 2017 Apr 27;7(5):49.https://doi.org/10.3390/brainsci7050049

  108. Hara Y, et al. Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proc Natl Acad Sci U S A. 2014;111:486–91.

    Article  CAS  PubMed  Google Scholar 

  109. Kabaso D, Coskren PJ, Henry BI, Hof PR, Wearne SL. The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cereb Cortex. 2009;19:2248–68.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Barbas H. General cortical and special prefrontal connections: principles from structure to function. Annu Rev Neurosci. 2015;38:269–89.

    Article  CAS  PubMed  Google Scholar 

  111. Petrides M, Pandya DN. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci. 1999;11:1011–36.

    Article  CAS  PubMed  Google Scholar 

  112. Petrides M, Pandya DN. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci. 2002;16:291–310.

    Article  CAS  PubMed  Google Scholar 

  113. Petrides M. Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci. 2005;360:781–95.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex. 2012;48:46–57.

    Article  PubMed  Google Scholar 

  115. Vogel P, Hahn J, Duvarci S, Sigurdsson T. Prefrontal pyramidal neurons are critical for all phases of working memory. Cell Rep. 2022;39:110659.

    Article  CAS  PubMed  Google Scholar 

  116. Goldman-Rakic PS. Regional and cellular fractionation of working memory. Proc Natl Acad Sci U S A. 1996;93:13473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995;14:477–85.

    Article  CAS  PubMed  Google Scholar 

  118. Bastos AM, Loonis R, Kornblith S, Lundqvist M, Miller EK. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory. Proc Natl Acad Sci U S A. 2018;115:1117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat. 2011;5:2.

    PubMed  PubMed Central  Google Scholar 

  120. Compte A, Brunel N, Goldman-Rakic PS, Wang XJ. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex. 2000;10:910–23.

    Article  CAS  PubMed  Google Scholar 

  121. Wang XJ. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci. 1999;19:9587–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 2001;24:455–63.

    Article  CAS  PubMed  Google Scholar 

  123. Schall JD, Boucher L. Executive control of gaze by the frontal lobes. Cognitive, Affective, & Behavioral Neuroscience volume 7, 396–412.

  124. Kaping D, Vinck M, Hutchison RM, Everling S, Womelsdorf T. Specific contributions of ventromedial, anterior cingulate, and lateral prefrontal cortex for attentional selection and stimulus valuation. PLoS Biol. 2011;9:e1001224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Levy R, Goldman-Rakic PS. Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp Brain Res. 2000;133:23–32.

    Article  CAS  PubMed  Google Scholar 

  126. Lee D, Rushworth MF, Walton ME, Watanabe M, Sakagami M. Functional specialization of the primate frontal cortex during decision making. J Neurosci. 2007;27:8170–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4:215–22.

    Article  CAS  PubMed  Google Scholar 

  128. Johnston K, Levin HM, Koval MJ, Everling S. Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron. 2007;53:453–62.

    Article  CAS  PubMed  Google Scholar 

  129. Ito S, Stuphorn V, Brown JW, Schall JD. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science. 2003;302:120–2.

    Article  CAS  PubMed  Google Scholar 

  130. Braver TS, Reynolds JR, Donaldson DI. Neural mechanisms of transient and sustained cognitive control during task switching. Neuron. 2003;39:713–26.

    Article  CAS  PubMed  Google Scholar 

  131. Fuster JM. The prefrontal cortex—an update: time is of the essence. Neuron. 2001;30:319–33.

    Article  CAS  PubMed  Google Scholar 

  132. Kolling N, et al. Value, search, persistence and model updating in anterior cingulate cortex. Nat Neurosci. 2016;19:1280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stoll FM, Fontanier V, Procyk E. Specific frontal neural dynamics contribute to decisions to check. Nat Commun. 2016;7:11990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Boschin EA, Piekema C, Buckley MJ. Essential functions of primate frontopolar cortex in cognition. Proc Natl Acad Sci. 2015;112:E1020–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tsujimoto S, Genovesio A, Wise SP. Evaluating self-generated decisions in frontal pole cortex of monkeys. Nat Neurosci. 2010;13:120–6.

    Article  CAS  PubMed  Google Scholar 

  136. Botvinick MM, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci. 2004;8:539–46.

    Article  PubMed  Google Scholar 

  137. MacDonald AW, Cohen JD, Stenger VA, Carter CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science. 2000;288:1835–8.

    Article  CAS  PubMed  Google Scholar 

  138. Brown JW, Braver TS. A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex. Brain Res. 2008;1202:99–108.

    Article  CAS  PubMed  Google Scholar 

  139. Medalla M, Barbas H. Synapses with inhibitory neurons differentiate anterior cingulate from dorsolateral prefrontal pathways associated with cognitive control. Neuron. 2009;61:609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Medalla M, Barbas H. Anterior cingulate synapses in prefrontal areas 10 and 46 suggest differential influence in cognitive control. J Neurosci. 2010;30:16068–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Luebke JI, et al. Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models. Brain Struct Funct. 2010;214:181–99.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Luebke JI, et al. Age-related changes to layer 3 pyramidal cells in the rhesus monkey visual cortex. Cereb Cortex. 2015;25:1454–68.

    Article  PubMed  Google Scholar 

  143. Peters A, Kemper T. A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiol Aging. 2012;33:2357–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Bethany Bowley, Penny Shultz, Karen Slater and Ethan Gaston for their invaluable assistance with this project and the CERCA Program/Generalitat de Catalunya for institutional support.

Funding

This project was funded by: NIH/NIA RF1AG043640, NIH/NIA RF1AG062831, NIH/NIA R01AG078460, NIH/NIA R01AG043478, NIH/NIA P01 AG000001, NIA-NSF CRCNS R01 AG071230, NIH/NIA R01 AG059028, PCI2020-112035 (Spanish State Research Agency (AEI)), the European Union “NextGenerationEU/PRTR”, the Spanish State Research Agency, Severo Ochoa and Maria de Maeztu program for Centers and Units of Excellence in R&D (CEX2020-001084-M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara L. Moore.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Moore, TL and Medalla, M are co-1st authors.

Luebke JL and Rosene DL are co-senior authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, T.L., Medalla, M., Ibañez, S. et al. Neuronal properties of pyramidal cells in lateral prefrontal cortex of the aging rhesus monkey brain are associated with performance deficits on spatial working memory but not executive function. GeroScience 45, 1317–1342 (2023). https://doi.org/10.1007/s11357-023-00798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00798-2

Keywords

Navigation