Skip to main content
Log in

Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We evaluate a new quantitative method of acquiring and analysing 18F positron emission tomography (PET) studies that enables regional bone plasma clearance (K i ) to be estimated from static scans acquired at multiple sites in the skeleton following a single injection of tracer.

Methods

Dynamic lumbar spine 18F PET data from two clinical trials were used to simulate a series of static scans acquired 30–60 min after injection. Venous blood samples were taken at 30, 40, 50 and 60 min and K i evaluated by Patlak analysis and the static scan method. The data were used to evaluate the precision errors of the Patlak and static scan methods expressed as the percentage coefficient of variation (%CV) and compare their response to 6 months of treatment with the bone anabolic agent teriparatide.

Results

Static scan K i measurements 30–60 min after injection were highly correlated with the Patlak results (r > 0.99). The %CV for the static scan method was 17.5% 30 min after injection, decreasing to 14.5% at 60 min, compared with 13.0% for Patlak analysis. Response to teriparatide treatment was +25.2% for the static scan method compared with +24.3% for Patlak analysis. The mean ratio (SD) of the static scan and Patlak K i results was 1.006 (0.015) at 30 min after injection decreasing to 0.965 (0.015) at 60 min.

Conclusion

18F-Fluoride bone plasma clearance can be estimated from a static scan and venous blood samples acquired 30–60 min after injection. The method enables K i to be estimated at multiple skeletal sites with a single injection of tracer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hawkins RA, Choi Y, Huang S-C, Hoh CK, Dahlborn M, Schiepers C, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 1992;33:633–42.

    PubMed  CAS  Google Scholar 

  2. Schiepers C, Nuyts J, Bormans G, Dequeker J, Bouillon R, Mortelmans L, et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 1997;38:1970–6.

    PubMed  CAS  Google Scholar 

  3. Cook GJR, Blake GM, Marsden PK, Cronin B, Fogelman I. Quantification of skeletal kinetic indices in Paget’s disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res 2002;17:854–9.

    Article  PubMed  CAS  Google Scholar 

  4. Frost ML, Cook GJR, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J Bone Miner Res 2003;18:2215–22.

    Article  PubMed  CAS  Google Scholar 

  5. Installé J, Nzeusseu A, Bol A, Depresseux G, Devogelaer JP, Lonneux M. (18)F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone. J Nucl Med 2005;46:1650–8.

    PubMed  Google Scholar 

  6. Uchida K, Nakajima H, Miyazaki T, Yayama T, Kawahara H, Kobayashi S, et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med 2009;50:1808–14.

    Article  PubMed  CAS  Google Scholar 

  7. Frost ML, Siddique M, Blake GM, Moore AE, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using (18)F-fluoride positron emission tomography. J Bone Miner Res 2011;26:1002–11.

    Article  PubMed  CAS  Google Scholar 

  8. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.

    Article  PubMed  CAS  Google Scholar 

  9. Brenner W, Vernon C, Muzi M, Mankoff DA, Link JM, Conrad EU, et al. Comparison of different quantitative approaches to 18F-fluoride PET scans. J Nucl Med 2004;45:1493–500.

    PubMed  CAS  Google Scholar 

  10. Siddique M, Frost ML, Blake GM, et al. The precision and sensitivity of 18F-fluoride PET for measuring regional bone metabolism: a comparison of quantification methods. J Nucl Med 2011. doi:10.2967/jnumed.111.093195

  11. Cheebsumon P, Velasquez LM, Hoekstra CJ, Hayes W, Kloet RW, Hoetjes NJ, et al. Measuring response to therapy using FDG PET: semi-quantitative and full kinetic analysis. Eur J Nucl Med Mol Imaging 2011;38:832–42.

    Article  PubMed  CAS  Google Scholar 

  12. Blake GM, Siddique M, Frost ML, Moore AEB, Fogelman I. Radionuclide studies of bone metabolism: do bone uptake and bone plasma clearance provide equivalent measurements of bone turnover? Bone 2011;49:537–42.

    Article  PubMed  CAS  Google Scholar 

  13. Blake GM, Frost ML, Fogelman I. Quantitative radionuclide studies of bone. J Nucl Med 2009;50:1747–50.

    Article  PubMed  Google Scholar 

  14. Cook GJ, Lodge MA, Marsden PK, Dynes A, Fogelman I. Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med 1999;26:1424–9.

    Article  PubMed  CAS  Google Scholar 

  15. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–10.

    Article  PubMed  CAS  Google Scholar 

  16. Glüer C-C, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995;5:262–70.

    Article  PubMed  Google Scholar 

  17. Lockhart CM, MacDonald LR, Alessio AM, McDougald WA, Doot RK, Kinahan PE. Quantifying and reducing the effect of calibration error on variability of PET/CT standardized uptake value measurements. J Nucl Med 2011;52:218–24.

    Article  PubMed  Google Scholar 

  18. Ishizu K, Nishizawa S, Yonekura Y, Sadato N, Magata Y, Tamaki N, et al. Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med 1994;35:1104–9.

    PubMed  CAS  Google Scholar 

  19. Thie JA. Clarification of a fractional uptake concept. J Nucl Med 1995;36:711–2.

    PubMed  CAS  Google Scholar 

  20. Ishizu K, Yonekura Y. Clarification of a fractional uptake concept—reply. J Nucl Med 1995;36:712.

    Google Scholar 

  21. Puri T, Blake GM, Frost ML, Moore AE, Siddique M, Cook GJ, et al. Validation of image-derived arterial input functions at the femoral artery using 18F-fluoride positron emission tomography. Nucl Med Commun 2011;32:808–17.

    Article  PubMed  Google Scholar 

  22. Blake GM, Park-Holohan S, Cook GJR, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001;31:28–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Study 1 was supported by an unrestricted grant from Warner Chilcott. Study 2 was supported by a research grant from Eli Lilly & Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musib Siddique.

Appendix: sensitivity analysis

Appendix: sensitivity analysis

Differentiating K i with respect to V 0 , in Eq. 2, we get,

$$ \frac{{d{K_i}}}{{d{V_0}}} = - \frac{{{C_{{plasma}}}(T)}}{{\int {{C_{{plasma}}}(t)dt} }} $$

Typically at T = 60 min, \( {C_{{plasma}}}(T) = {\text{ 2 KBq}}/{\text{ml}} \), and \( \int_0^T {{C_{{plasma}}}(t)dt} = {26}0\,{\text{KBq}}/{\text{ml}} {\text{min,}} \)so, \( \frac{{d{K_i}}}{{d{V_0}}} = { } - 0.0{77} \)

Assuming V 0 takes values 0.4 ± 0.2, maximum error in net plasma clearance is:

$$ d{K_i} = { }\pm { }0.0{77}*0.{2 } = { }\pm { }0.0{15} $$

Since the typical K i value at the lumbar spine is 0.03, the percentage error is:

$$ \% {\text{ Error in}}\,{K_i} = {1}00*0.00{15}/0.0{3} = {5}\% $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddique, M., Blake, G.M., Frost, M.L. et al. Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images. Eur J Nucl Med Mol Imaging 39, 337–343 (2012). https://doi.org/10.1007/s00259-011-1966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1966-y

Keywords

Navigation