Skip to main content

Advertisement

Log in

Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To reveal the morphological and functional substrates of memory impairment and conversion to Alzheimer disease (AD) from the stage of amnestic mild cognitive impairment (aMCI).

Methods

Brain MRI and FDG-PET were performed in 20 patients with aMCI and 12 controls at baseline. During a mean follow-up of about 2 years, 9 patients developed AD (converters), and 11 did not (nonconverters). All images were processed with SPM2. FDG-PET and segmented grey matter (GM) images were compared in: (1) converters versus controls, (2) nonconverters versus controls, and (3) converters versus nonconverters.

Results

As compared to controls, converters showed lower GM density in the left parahippocampal gyrus and both thalami, and hypometabolism in the precuneus, posterior cingulate and superior parietal lobule in the left hemisphere. Hypometabolism was found in nonconverters as compared to controls in the left precuneus and posterior cingulated gyrus. As compared to nonconverters, converters showed significant hypometabolism in the left middle and superior temporal gyri.

Conclusion

The discordant topography between atrophy and hypometabolism reported in AD is already present at the aMCI stage. Posterior cingulate–precuneus hypometabolism seemed to be an early sign of memory deficit, whereas hypometabolism in the left temporal cortex marked the conversion to AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183–94.

    Article  CAS  PubMed  Google Scholar 

  2. Feldman HH, Jacova C. Mild cognitive impairment. Am J Geriatr Psychiatry. 2005;13:645–55.

    PubMed  Google Scholar 

  3. Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, et al. Natural history of mild cognitive impairment in older persons. Neurology 2002;59:198–205.

    CAS  PubMed  Google Scholar 

  4. Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med. 2006;47:1778–86.

    CAS  PubMed  Google Scholar 

  5. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46.

    Article  PubMed  Google Scholar 

  6. Price JL, Davis PB, Morris JC, White DL. The distribution of tangles, plaques, and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging. 1991;12:295–312.

    Article  CAS  PubMed  Google Scholar 

  7. Gomez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci. 1996;16:4491–500.

    CAS  PubMed  Google Scholar 

  8. Jack CR Jr, Petersen RC. Structural imaging approaches to Alzheimer’s disease. In: Scinto LFM, Daffner KR, editors. Early diagnosis and treatment of Alzheimer’s disease. Totowa, NJ: Human; 2000. p. 127–48.

    Chapter  Google Scholar 

  9. Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 2000;54:1760–7.

    CAS  PubMed  Google Scholar 

  10. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hanninen T, Laakso MP, et al. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 2004;25:303–10.

    Article  PubMed  Google Scholar 

  11. Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mapping grey matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002;13:1939–43.

    Article  PubMed  Google Scholar 

  12. Karas GB, Scheltens P, Rombouts SA, Visser PJ, van Schijndel RA, Fox NC, et al. Global and local grey matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2004;23:708–16.

    Article  CAS  PubMed  Google Scholar 

  13. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005;32:486–510.

    Article  CAS  PubMed  Google Scholar 

  14. Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer’s disease. Brain 1999;122:1519–31.

    Article  PubMed  Google Scholar 

  15. Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 2003;60:1374–7.

    CAS  PubMed  Google Scholar 

  16. Chetelat G, Desgranges B, de la Sayette V, Viader F, Berkouk K, Landeau B, et al. Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain 2003;126:1955–67.

    Article  PubMed  Google Scholar 

  17. Ishii K, Sasaki H, Kono AK, Miyamoto N, Fukuda T, Mori E. Comparison of grey matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging 2005;32:959–63.

    Article  PubMed  Google Scholar 

  18. Kawachi T, Ishii K, Sakamoto S, Sasaki M, Mori T, Yamashita F, et al. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimers disease. Eur J Nucl Med Mol Imaging 2006;33:801–9.

    Article  PubMed  Google Scholar 

  19. Walhovd KB, Fjell AM, Amlien I, Grambaite R, Stenset V, Bjørnerud A, et al. Multimodal imaging in mild cognitive impairment: metabolism, morphometry and diffusion of the temporal-parietal memory network. Neuroimage 2009;45(1):215–23.

    Article  CAS  PubMed  Google Scholar 

  20. Visser PJ, Verhey FR, Boada M, Bullock R, De Deyn PP, Frisoni GB, et al. Development of screening guidelines and clinical criteria for predementia Alzheimer’s disease. The DESCRIPA study. Neuroepidemiology 2008;30:254–65.

    Article  CAS  PubMed  Google Scholar 

  21. Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    Article  CAS  PubMed  Google Scholar 

  22. Katz S, Downs TD, Cash HR, Grotz RC. Progress in development of the index of ADL. Gerontologist 1970;10:20–30.

    CAS  PubMed  Google Scholar 

  23. Lawton MP, Brody EM. Assessment of older people; self-maintaining and instrumental activities of daily living. Gerontologist 1969;9:179–86.

    CAS  PubMed  Google Scholar 

  24. Cummings JL, Mega M, Grey K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994;44:2308–14.

    CAS  PubMed  Google Scholar 

  25. Masur DM, Fuld PA, Blau AD, Thal LJ, Levin HS, Aronson MK. Distinguishing normal and demented elderly with selective reminding test. J Clin Exp Neuropsychol 1989;11:615–30.

    Article  CAS  PubMed  Google Scholar 

  26. Carlesimo GA, Caltagirone C, Gainotti G. The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analysis of cognitive impairment. The group for the standardization of the Mental Deterioration Battery. Eur Neurol. 1996;36:378–84.

    Article  CAS  PubMed  Google Scholar 

  27. Spinnler H, Tognoni G. Standardizzazione e taratura Italiana di test neuropsicologici. Ital J Neurol Sci. 1987;6(Suppl 8):1–120.

    Google Scholar 

  28. Barbarotto R, Laiacona M, Frosio R, Vecchio M, Farinato A, Capitani E. A normative study on visual reaction times and two Stroop colour-word tests. Ital J Neurol Sci. 1998;19:161–70.

    Article  CAS  PubMed  Google Scholar 

  29. Watson YI, Arfken CL, Birge SJ. Clock completion: an objective screening test for dementia. J Am Geriatr Soc. 1993;41:1235–40.

    CAS  PubMed  Google Scholar 

  30. Amodio P, Wenin H, Del Piccolo F, Mapelli D, Montagnese S, Pellegrini A, et al. Variability of trail making test, symbol digit test and line trait test in normal people. A normative study taking into account age-dependent decline and sociobiological variables. Aging Clin Exp Res. 2002;14:117–31.

    PubMed  Google Scholar 

  31. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34:939–44.

    CAS  PubMed  Google Scholar 

  32. Bartenstein P, Asenbaum S, Catafau A, Halldin C, Pilowski L, Pupi A, et al. European Association of Nuclear Medicine procedure guidelines for brain imaging using [(18)F]FDG. Eur J Nucl Med. 2002;29:BP43–8.

    CAS  Google Scholar 

  33. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical; 1988.

    Google Scholar 

  34. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1994;2:189–210.

    Article  Google Scholar 

  35. Gispert JD, Pascau J, Reig S, Martínez-Lázaro R, Molina V, García-Barreno P, et al. Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. Neuroimage 2003;19:601–12.

    Article  CAS  PubMed  Google Scholar 

  36. Meyer JH, Gunn RN, Myers R, Grasby PM. Assessment of spatial normalization of PET ligand images using ligand-specific templates. Neuroimage 1999;9:545–53.

    Article  CAS  PubMed  Google Scholar 

  37. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21–36.

    Article  CAS  PubMed  Google Scholar 

  38. Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology 2005;65:1708–15.

    Article  CAS  PubMed  Google Scholar 

  39. Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol. 2003;54:343–51.

    Article  PubMed  Google Scholar 

  40. Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, Kunihiro T, et al. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med. 2000;41:1155–62.

    CAS  PubMed  Google Scholar 

  41. Caroli A, Testa C, Geroldi C, Nobili F, Barnden LR, Guerra UP, et al. Cerebral perfusion correlates of conversion to Alzheimer’s disease in amnestic mild cognitive impairment. J Neurol. 2007;254:1698–707.

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell AJ, Shiri-Feshki M. Temporal trends in the long term risk of progression of mild cognitive impairment: a pooled analysis. J Neurol Neurosurg Psychiatry 2008;79(12):1386–91.

    Article  CAS  PubMed  Google Scholar 

  43. de Leon MJ, George AE, Stylopoulos LA, Smith G, Miller DC. Early marker for Alzheimer’s disease: the atrophic hippocampus. Lancet 1989;2:672–3.

    PubMed  Google Scholar 

  44. Braak H, Braak E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl. 1996;165:3–12.

    CAS  PubMed  Google Scholar 

  45. Magistretti PJ. Cellular basis of functional brain imaging: insight from neural-glia metabolic coupling. Brain Res. 2000;886:108–12.

    Article  CAS  PubMed  Google Scholar 

  46. Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol. 1999;45:358–68.

    Article  CAS  PubMed  Google Scholar 

  47. Callen DJA, Black SE, Gao F, Caldwell CB, Szalai JP. Beyond the hippocampus: MRI volumetry confirms widespread limbic atrophy in AD. Neurology 2001;57:1669–74.

    CAS  PubMed  Google Scholar 

  48. Rose SE, Janke AL, Chalk JB. Grey and white matter changes in Alzheimer’s disease: a diffusion tensor imaging study. J Magn Reson Imaging 2008;27:20–6.

    Article  PubMed  Google Scholar 

  49. Cabeza R, Nyberg L. Imaging cognition, II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12:1–47.

    Article  CAS  PubMed  Google Scholar 

  50. Convit A, de Asis J, de Leon MJ, Tarshis CY, De Santi S, Rusinek H. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiol Aging 2000;21(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  51. Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 2007;130:1777–86.

    Article  PubMed  Google Scholar 

  52. Karas G, Sluimer J, Goekoop R, van der Flier W, Rombouts SA, Vrenken H, et al. Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol 2008;29(5):944–9.

    Article  CAS  PubMed  Google Scholar 

  53. Hunt A, Schönknecht P, Henze M, Seidl U, Haberkorn U, Schröder J. Reduced cerebral glucose metabolism in patients at risk for Alzheimer’s disease. Psychiatry Res. 2007;155:147–54.

    Article  CAS  PubMed  Google Scholar 

  54. Nobili F, Salmaso D, Morbelli S, Girtler N, Piccardo A, Brugnolo A, et al. Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging 2008;35:2191–202.

    Article  PubMed  Google Scholar 

  55. Caroli A, Geroldi C, Nobili F, Barnden LR, Guerra UP, Bonetti M, et al. Functional compensation in incipient Alzheimer’s disease. Neurobiol Aging 2008. doi:10.1016/j.neurobiolaging.2008.05.001

  56. Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B, Holthoff V, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 2004;63:2332–40.

    CAS  PubMed  Google Scholar 

  57. Anchisi D, Borroni B, Franceschi M, Kerrouche N, Kalbe E, Beuthien-Beumann B, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62:1728–33.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Michele Chiabrera for assistance with the English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Morbelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morbelli, S., Piccardo, A., Villavecchia, G. et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging 37, 36–45 (2010). https://doi.org/10.1007/s00259-009-1218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1218-6

Keywords

Navigation