Skip to main content

Advertisement

Log in

Simultaneous evaluation of myocardial blood flow, cardiac function and lung water content using [15O]H2O and positron emission tomography

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study sought to evaluate an imaging approach using [15O]H2O and positron emission tomography (PET) for simultaneous assessment of myocardial perfusion, cardiac function and lung water content as a potential indicator of pulmonary oedema.

Methods

Twenty-six subjects divided into two groups (group I, 13 patients with idiopathic dilated cardiomyopathy; group II, 13 healthy volunteers) underwent dynamic PET scanning after intravenous infusion of ≈995 MBq [15O]H2O. In both groups, echocardiograms were performed after the PET studies. From the dynamic [15O]H2O data, lung water content (LWC) at equilibrium, myocardial blood flow (MBF), cardiac output (CO), stroke volume (SV) and stroke volume indexes (SVI) using the indicator dilution principle were determined.

Results

LWC was 18% (p = 0.038) higher in patients than in controls. Global MBF did not differ significantly between the groups, but regional MBF values were significantly lower (p < 0.05) in the anterior and septal walls in the patient group. The results of the Passing-Bablok regression indicated the absence of a systematic difference between the two techniques. Bland-Altman analysis performed for each group (patients vs healthy controls) showed a non-significant bias (p > 0.1) of −0.02 ± 0.82 vs −0.05 ± 0.54 l/min (CO), −1.44 ± 14.31 vs 1.70 ± 10.56 ml/beat (SV) and 0.47 ± 6.21 vs 0.30 ± 5.02 ml/beat/m2 (SVI). The 95% limits of agreement were −1.62 to 1.59 vs −1.11 to 1.01 l/min (CO), −26.61 to 29.49 vs −22.39 to 18.99 ml/beat (SV) and −11.69 to 12.88 vs −9.53 to 10.14 ml/beat/m2 (SVI). Right ventricular CO was increased by 33% (p = 0.014) in the patient group as compared with normal controls.

Conclusion

Our results demonstrate that additional analysis of cardiac function and lung water content are feasible from the dynamic cardiac [15O]H2O PET studies acquired for myocardial perfusion. The parameters appear to work as expected. Further studies are warranted to elucidate the clinical value of these new parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 2005;46(1):75–88.

    PubMed  Google Scholar 

  2. Rimoldi OE, Camici PG. Positron emission tomography for quantitation of myocardial perfusion. J Nucl Cardiol 2004;11(4):482–90.

    Article  PubMed  Google Scholar 

  3. Stolen KQ, Kemppainen J, Kalliokoski KK, Hallsten K, Luotolahti M, Karanko H, et al. Myocardial perfusion reserve and peripheral endothelial function in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 2004;93(1):64–8. Jan.

    Article  PubMed  Google Scholar 

  4. Kalliokoski KK, Nuutila P, Laine H, Luotolahti M, Janatuinen T, Raitakari OT, et al. Myocardial perfusion and perfusion reserve in endurance-trained men. Med Sci Sports Exerc 2002;34(6):948–53.

    Article  PubMed  Google Scholar 

  5. Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic H2(15)O PET and factor analysis. J Nucl Med 2001;42(5):782–7.

    PubMed  CAS  Google Scholar 

  6. Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim SK, Yeo JS, et al. Blind separation of cardiac components and extraction of input function from H(2)(15)O dynamic myocardial PET using independent component analysis. J Nucl Med 2001;42(6):938–43.

    PubMed  CAS  Google Scholar 

  7. Hermansen F, Ashburner J, Spinks TJ, Kooner JS, Camici PG, Lammertsma AA. Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood-pool scan. J Nucl Med 1998;39:1696–702.

    PubMed  CAS  Google Scholar 

  8. Lange NR, Schuster DP. The measurement of lung water. Crit Care 1999;3(2):R19–24.

    Article  PubMed  Google Scholar 

  9. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003;2(3):131–7.

    Article  PubMed  Google Scholar 

  10. Schuster DP, Mintun MA, Green MA, Ter-Pogossian MM. Regional lung water and hematocrit determined by positron emission tomography. J Appl Physiol 1985;59:860–8.

    PubMed  CAS  Google Scholar 

  11. Velazquez M, Haller J, Amundsen T, Schuster DP. Regional lung water measurements with PET: accuracy, reproducibility, and linearity. J Nucl Med 1991;32:719–25.

    PubMed  CAS  Google Scholar 

  12. Iida H, Rhodes C, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA, et al. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 1992;33:1669–77.

    PubMed  CAS  Google Scholar 

  13. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron-emission tomography: strategy for quantification in relation to the partial-volume effect. Circulation 1988;78:104–15.

    PubMed  CAS  Google Scholar 

  14. Chen EQ, MacIntyre WJ, Fouad FM, Brunken RC, Go RT, Wong CO, et al. Measurement of cardiac output with first-pass determination during rubidium-82 PET myocardial perfusion imaging. Eur J Nucl Med 1996;23:993–6.

    Article  PubMed  CAS  Google Scholar 

  15. Hove JD, Kofoed KF, Wu HM, Holm S, Friberg L, Meyer C, et al. Simultaneous cardiac output and regional myocardial perfusion determination with PET and nitrogen 13 ammonia. J Nucl Cardiol 2003;10(1):28–33.

    Article  PubMed  Google Scholar 

  16. Sorensen J, Stahle E, Langstrom B, Frostfeldt G, Wikstrom G, Hedenstierna G. Simple and accurate assessment of forward cardiac output by use of 1-(11)C-acetate PET verified in a pig model. J Nucl Med 2003;44(7):1176–83.

    PubMed  Google Scholar 

  17. Frostfeldt G, Sorensen J, Lindahl B, Valind S, Wallentin L. Development of myocardial microcirculation and metabolism in acute ST-elevation myocardial infarction evaluated with positron emission tomography. J Nucl Cardiol 2005;12(1):43–54.

    Article  PubMed  Google Scholar 

  18. Passing H, Bablok W. A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, part i. J Clin Chem Clin Biochem 1983;21:709–20.

    PubMed  CAS  Google Scholar 

  19. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–10.

    PubMed  CAS  Google Scholar 

  20. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 2001;50(1):151–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the technical staff from the Turku PET Centre for their assistance during the acquisition and analysis of the PET data sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhani Knuuti.

Additional information

This study was financially supported by grants from Turku University Hospital (EVO) and Finnish Foundation for Cardiovascular Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naum, A., Tuunanen, H., Engblom, E. et al. Simultaneous evaluation of myocardial blood flow, cardiac function and lung water content using [15O]H2O and positron emission tomography. Eur J Nucl Med Mol Imaging 34, 563–572 (2007). https://doi.org/10.1007/s00259-006-0259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0259-3

Keywords

Navigation