Skip to main content

Advertisement

Log in

Human radiation dosimetry of [11C]MeAIB, a new tracer for imaging of system A amino acid transport

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

[N-methyl-11C]α-methylaminoisobutyric acid ([11C]MeAIB) is a promising positron emission tomography (PET) tracer for imaging hormonally regulated system A amino acid transport. Uptake of [11C]MeAIB is totally specific for amino acid transport since [11C]MeAIB is metabolically stable both extra- and intracellularly. The aim of this study was to measure cumulated radioactivity in different organs and estimate the absorbed radiation doses to humans with the Medical Internal Radiation Dosimetry (MIRD) method.

Methods

Radiation absorbed doses were calculated from PET images for 25 volunteers. Dynamic acquisition data were obtained for the thoracic, abdominal, femoral and head and neck regions. The median dose of intravenously injected [11C]MeAIB was 422±35 MBq, with a range of 295–493 MBq. After PET imaging the radioactivity in voided urine was measured. Experimental human data were used for residence time estimates. Radiation doses were calculated with commonly used software.

Results

The effective dose for a 70-kg adult was 0.004 mSv/MBq, corresponding to a 1.72 mSv effective dose from the PET study with injection of 430 MBq [11C]MeAIB. The highest absorbed doses were in the pancreas (0.018 mGy/MBq), kidneys (0.017 mGy/MBq), intestine (0.014 mGy/MBq), liver (0.008 mGy/MBq) and stomach (0.005 mGy/MBq). Only 0.57% of injected activity was excreted to urine within 1 h after injection.

Conclusion

Biodistribution of [11C]MeAIB in the abdominal region reflected the high activity of the transportation of amino acids via system A and these organs also had the highest radiation doses. An effective dose of 0.004 mSv/MBq is fully justified when [11C]MeAIB PET is performed to study system A activity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Christensen HN. Role of amino acid transport and counter-transport in nutrition and metabolism. Physiol Rev 1990;70:43–77

    PubMed  CAS  Google Scholar 

  2. Någren K, Sutinen E, Jyrkkiö S. [N-methyl-11C]MeAIB, a tracer for system A amino acid transport: preparation from [11C]methyl triflate and HPLC metabolite analysis of plasma samples after intravenous administration in man. J Labelled Cpd Radiopharm 2000;43:1013–1021

    Article  Google Scholar 

  3. Weber MJ, Evans PK, Johnson MA, McNair TF, Nakamura KD, Salter DW. Transport of potassium, amino acids, and glucose in cells transformed by Rous sarcoma virus. Fed Proc 1984;43:107–112

    PubMed  CAS  Google Scholar 

  4. Racker E, Resnick RJ, Feldman R. Glucolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc Natl Acad Sci USA 1985;82:3535–3538

    Article  PubMed  CAS  Google Scholar 

  5. Boerner P, Saier MH JR. Growth regulation and amino acid transport in epithelial cells: influence of culture conditions and transport on A, ASC, and L transport activities. J Cell Physiol 1982;113:240–246

    Article  PubMed  CAS  Google Scholar 

  6. Sutinen E, Jyrkkiö S, Grönroos T, Haaparanta M, Lehikoinen P, Någren K. Biodistribution of [11C] methylaminoisobutyric acid, a tracer for PET studies on system A amino acid transport in vivo. Eur J Nucl Med 2001;28:847–854

    Article  PubMed  CAS  Google Scholar 

  7. Sutinen E, Jyrkkiö S, Alanen K, Någren K, Minn H. Uptake of [N-methyl-11C]α-methylaminoisobutyric acid in untreated head and neck cancer studied by PET. Eur J Nucl Med Mol Imaging 2003;30:72–77

    Article  PubMed  CAS  Google Scholar 

  8. Asola M, Virtanen K, Peltoniemi P, Någren K, Yu M, Mattila K, et al. Amino acid uptake in skeletal muscle measured using [11C]methylaminoisobutyrate (MEAIB) and PET. Eur J Nucl Med Mol Imaging 2002;29:1485–1491

    Article  PubMed  CAS  Google Scholar 

  9. Deloar HM, Fujiwara T, Nakamura T, Itoh M, Imai D, Miyake M, et al. Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med 1998;25:629–633

    Article  PubMed  CAS  Google Scholar 

  10. Addendum 4 to ICRP publication 53, approved for web site publication by ICRP committees 2 and 3 in 2001/2002. http://www.icrp.org/docs/Add4_P53.pdf

  11. Tolvanen T, Lehtiö K, Kulmala J, Oikonen V, Eskola O, Bergman J, et al. 18F-fluoroerythronitroimidazole radiation dosimetry in cancer studies. J Nucl Med 2002;43:1674–1680

    PubMed  CAS  Google Scholar 

  12. Graham MM, Peterson LM, Link JM, Evans ML, Rasey JS, Koh WJ, et al. Fluorine-18-fluoroimidazole radiation dosimetry in imaging studies. J Nucl Med 1997;38:1631–1636

    PubMed  CAS  Google Scholar 

  13. Mankoff DA, Peterson LM, Tewson TJ, Link JM, Gralow JR, Graham MM, et al. [18F]Fluoroestradiol radiation dosimetry in human PET studies. J Nucl Med 2001;42:679–684

    PubMed  CAS  Google Scholar 

  14. Vesselle, H, Grierson J, Peterson LM, Muzi M, Mankoff DA, Krohn KA. 18F-Fluorothymidine radiation dosimetry in human PET imaging studies. J Nucl Med 2003;44:1482–1488

    PubMed  CAS  Google Scholar 

  15. DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med 1994;35:1398–1406

    PubMed  CAS  Google Scholar 

  16. Spinks TJ, Jones T, Gillardi MC, Heather JD. Physical performance of the latest generation of commercial positron scanner. IEEE Trans Nucl Sci 1988;35:721–725

    Article  CAS  Google Scholar 

  17. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 1996;37:538–546

    PubMed  CAS  Google Scholar 

  18. Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IH. Report of the task group on reference man. Oxford: Pergamon Press; 1974. p. 325–327

    Google Scholar 

  19. Deterding TA, Votaw JR, Wang CK, Eshima D, Eshima L, Keil R, et al. Biodistribution and radiation dosimetry of the dopamine transporter ligand [18F]FECNT. J Nucl Med 2001;42:376–381

    PubMed  CAS  Google Scholar 

  20. ICRP Publication 60. 1990 Recommendation of the International Commission on Radiological Protection. Oxford: Pergamon Press; 1990

    Google Scholar 

  21. Addendum 7 to ICRP Publication 53, 2002. http://www.icrp.org/docs/Add_5-7_to_P53.pdf

  22. Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, et al. MIRD pamphlet no. 19: absorbed fractions and radionuclide s values for six age-dependent multiregion models of the kidney. J Nucl Med 2003;44:1113–1147

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the medical laboratory technologists and radiographers of the Turku PET Centre for their skilful assistance and co-operation. We thank Mr. Vesa Oikonen, MSc, for his help in modelling blood and plasma data. We thank Mr. Ian Wilson, PhD, for editing the English.

The project and the study protocol were approved by the joint ethical committee of Turku University and Turku University Central Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuula Tolvanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolvanen, T., Någren, K., Yu, M. et al. Human radiation dosimetry of [11C]MeAIB, a new tracer for imaging of system A amino acid transport. Eur J Nucl Med Mol Imaging 33, 1178–1184 (2006). https://doi.org/10.1007/s00259-006-0096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0096-4

Keywords

Navigation