Skip to main content

Advertisement

Log in

Imaging in cell-based therapy for neurodegenerative diseases

  • Supplement
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Fetal cell transplantation for the treatment of Parkinson’s and Huntington’s diseases has been developed over the past two decades and is now in early clinical testing phase. Direct assessment of the graft’s survival, integration into the host brain and impact on neuronal functions requires advanced in vivo neuroimaging techniques. Owing to its high sensitivity, positron emission tomography is today the most widely used tool to evaluate the viability and function of the transplanted tissue in the brain. Nuclear magnetic resonance techniques are opening new possibilities for imaging neurochemical events in the brain. The ultimate goal will be to use the combination of multiple imaging modalities for complete functional monitoring of the repair processes in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AADC:

aromatic l-amino acid decarboxylase

AD:

Alzheimer’s disease

ADC:

apparent diffusion coefficient

BOLD:

blood oxygen level dependent

CIT:

2-β-carbomethoxy-3-β-(4-iodophenyl)tropane

CNTF:

ciliary neurotrophic factor

Cr:

creatine

DA:

dopamine

DAT:

dopamine transporter

DTBZ:

dihydrotetrabenazine

DTI:

diffusion tensor imaging

DWI:

diffusion-weighted imaging

FDG:

fluorodeoxyglucose

GABA:

γ-aminobutyric acid

GAPDH:

glyceraldehyde phosphate dehydrogenase

Gd:

gadolinium

HAP:

Huntington-associated protein

HD:

Huntington’s disease

l-DOPA:

3,4-dihydroxyphenylalanine

MAO:

monoamine oxidase

MRI:

magnetic resonance imaging

MRS:

magnetic resonance spectroscopy

MSA-P:

striatonigral variant of multiple system atrophy

NAA:

N-acetylaspartate

NADPH:

nicotinamide adenine dinucleotide phosphate

NMDA:

N-methyl-d-aspartate

NMR:

nuclear magnetic resonance

NOS:

nitric oxide synthase

PCr:

phosphocreatine

PD:

Parkinson’s disease

PE2I:

N-(3-iodoprop-(2E)-enyl)-2β-carboxymethoxy-3β-(4′-methylphenyl)nortropane

PET:

positron emission tomography

PIB:

Pittsburg Compound-B

SNc:

substantia nigra pars compacta

VTA:

ventral tegmental area

References

  1. Tanner CM, Ben-Shlomo Y. Epidemiology of Parkinson’s disease. Adv Neurol 1999;80:153–9

    PubMed  Google Scholar 

  2. Lindgren P. Economic evidence in Parkinson’s disease: a review. Eur J Health Econ 2004;5 Suppl 1:S63–6

    Article  PubMed  Google Scholar 

  3. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration. Nat Med 2004;10 Suppl:S2–9

    Article  PubMed  Google Scholar 

  4. Hardy J, Cookson MR, Singleton A. Genes and parkinsonism. Lancet Neurol 2003;2 4:221–8

    Article  PubMed  Google Scholar 

  5. Lai BC, Marion SA, Teschke K, Tsui JK. Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism Relat Disord 2002;8 5:297–309

    Article  PubMed  Google Scholar 

  6. Di Monte DA. The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2003;2 9:531–8

    Article  PubMed  Google Scholar 

  7. Obeso JA, Olanow CW, Nutt JG. Levodopa motor complications in Parkinson’s disease. Trends Neurosci 2000;23 10 Suppl:S2–7

    Article  PubMed  Google Scholar 

  8. Olanow CW, Koller WC. An algorithm (decision tree) for the management of Parkinson’s disease: treatment guidelines. American Academy of Neurology. Neurology 1998;50 3 Suppl 3:S1–57

    Google Scholar 

  9. Quinn NP. Parkinson’s disease: clinical features. Baillieres Clin Neurol 1997;6 1:1–13

    PubMed  Google Scholar 

  10. Zgaljardic DJ, Foldi NS, Borod JC. Cognitive and behavioral dysfunction in Parkinson’s disease: neurochemical and clinicopathological contributions. J Neural Transm 2004;111 10–1:1287–301

    Article  PubMed  Google Scholar 

  11. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56 1:33–9

    Article  PubMed  Google Scholar 

  12. Aarsland D, Larsen JP, Cummins JL, Laake K. Prevalence and clinical correlates of psychotic symptoms in Parkinson disease: a community-based study. Arch Neurol 1999;56 5:595–601

    Article  PubMed  Google Scholar 

  13. Lemke MR, Fuchs G, Gemende I, Herting B, Oehlwein C, Reichmann H, et al. Depression and Parkinson’s disease. J Neurol 2004;251 Suppl 6:VI/24–7

    Article  Google Scholar 

  14. Schrag A. Psychiatric aspects of Parkinson’s disease—an update. J Neurol 2004;251 7:795–804

    Article  PubMed  Google Scholar 

  15. Brissaud E. Lecons sur les Maladies Nerveuses. Paris: Salpétriére; 1895

    Google Scholar 

  16. Lewy F. Paralisis Agitans: I. Pathologisches anatomie. In: Handbuch der neurologie. Berlin Heidelberg New York: Springer; 1912. p. 920–33

    Google Scholar 

  17. Tretiàkoff C. Contribution à l’étude de l’anatomie pathologique du locus niger der Soemmering avec quelces déductions relatives à la pathogénie des troubles du tonus musculaire et de la maladie de Parkinson. Paris: University of Paris; 1919

    Google Scholar 

  18. Bertler A, Rosengren E. Occurrence and distribution of catechol amines in brain. Acta Physiol Scand 1959;47:350–61

    PubMed  Google Scholar 

  19. Ehinger H, Hornykiewicz O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrangungen des extrapyramidalen Systems. Klin Wochenschr 1960;38:1236–9

    Article  PubMed  Google Scholar 

  20. Bjorklund A, Lindvall O. Catecholaminergic brain stem regulatory systems. In: Handbook of physiology. Baltimore: Waverly Press; 1986. p. 155–235

    Google Scholar 

  21. Agid Y, Ruberg M, Javoy-Agid F, Hirsch E, Raisman-Vozari R, Vyas S, et al. Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? Adv Neurol 1993;60:148–64

    PubMed  Google Scholar 

  22. Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 1988;334 6180:345–8

    Article  PubMed  Google Scholar 

  23. Hassler R. Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol 1938;48:387–476

    Google Scholar 

  24. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991;114 Pt 5:2283–301

    PubMed  Google Scholar 

  25. Nyberg P, Nordberg A, Wester P, Winblad B. Dopaminergic deficiency is more pronounced in putamen than in nucleus caudatus in Parkinson’s disease. Neurochem Pathol 1983;1:193–202

    Google Scholar 

  26. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 1988;318 14:876–80

    PubMed  Google Scholar 

  27. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999;122 Pt 8:1437–48

    Article  PubMed  Google Scholar 

  28. Cotzias J, Van Woert M, Scheffer L. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276:374–9

    PubMed  Google Scholar 

  29. Mouradian MM, Heuser IJ, Baronti F, Fabbrini G, Juncos JL, Chase TN. Pathogenesis of dyskinesias in Parkinson’s disease. Ann Neurol 1989;25 5:523–6

    Article  PubMed  Google Scholar 

  30. Chase TN, Mouradian MM, Engber TM. Motor response complications and the function of striatal efferent systems. Neurology 1993;43 12 Suppl 6:S23–7

    PubMed  Google Scholar 

  31. Nutt JG, Obeso JA, Stocchi F. Continuous dopamine-receptor stimulation in advanced Parkinson’s disease. Trends Neurosci 2000;23 10 Suppl:S109–15

    Article  PubMed  Google Scholar 

  32. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 2000;342 20:1484–91

    Article  PubMed  Google Scholar 

  33. Stocchi F, Ruggieri S, Vacca L, Olanow CW. Prospective randomized trial of lisuride infusion versus oral levodopa in patients with Parkinson’s disease. Brain 2002;125 Pt 9:2058–66

    Article  PubMed  Google Scholar 

  34. Rascol O. The pharmacological therapeutic management of levodopa-induced dyskinesias in patients with Parkinson’s disease. J Neurol 2000;247 Suppl 2:II51–7

    PubMed  Google Scholar 

  35. Del Dotto P, Pavese N, Gambaccini G, Bernardini S, Metman LV, Chase TN, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord 2001;16 3:515–20

    Article  PubMed  Google Scholar 

  36. Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990;247 4942:574–7

    PubMed  Google Scholar 

  37. Lindvall O, Bjorklund A. Cell therapy in Parkinson’s disease. Neurorx 2004;1 4:382–93

    Article  PubMed  Google Scholar 

  38. Winkler C, Kirik D, Bjorklund A. Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 2005;28 2:86–92

    Article  PubMed  Google Scholar 

  39. Collier TJ, Sortwell CE, Daley BF. Diminished viability, growth, and behavioral efficacy of fetal dopamine neuron grafts in aging rats with long-term dopamine depletion: an argument for neurotrophic supplementation. J Neurosci 1999;19 13:5563–73

    PubMed  Google Scholar 

  40. Kirik D, Winkler C, Bjorklund A. Growth and functional efficacy of intrastriatal nigral transplants depend on the extent of nigrostriatal degeneration. J Neurosci 2001;21 8:2889–96

    PubMed  Google Scholar 

  41. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344 10:710–9

    Article  PubMed  Google Scholar 

  42. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003;54 3:403–14

    Article  PubMed  Google Scholar 

  43. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 1983;306 5940:234–8

    Article  PubMed  Google Scholar 

  44. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72 6:971–83

    Google Scholar 

  45. Gutekunst CA, Li SH, Yi H, Ferrante RJ, Li XJ, Hersch SM. The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J Neurosci 1998;18 19:7674–86

    PubMed  Google Scholar 

  46. Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, Roses AD, et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 1996;2 3:347–50

    Article  PubMed  Google Scholar 

  47. Bao J, Sharp AH, Wagster MV, Becher M, Schilling G, Ross CA, et al. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci U S A 1996;93 10:5037–42

    Article  PubMed  Google Scholar 

  48. Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 1996;271 32:19385–94

    Article  PubMed  Google Scholar 

  49. Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, et al. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet 1997;16 1:44–53

    Article  PubMed  Google Scholar 

  50. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 1997;41 5:646–53

    Article  PubMed  Google Scholar 

  51. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 1997;41 2:160–5

    Article  PubMed  Google Scholar 

  52. Harper PS. Huntington’s disease. London: W.B. Saunders; 1991

    Google Scholar 

  53. Wellington CL, Brinkman RR, O’Kusky JR, Hayden MR. Toward understanding the molecular pathology of Huntington’s disease. Brain Pathol 1997;7 3:979–1002

    PubMed  Google Scholar 

  54. Kremer B, Weber B, Hayden MR. New insights into the clinical features, pathogenesis and molecular genetics of Huntington disease. Brain Pathol 1992;2 4:321–35

    PubMed  Google Scholar 

  55. Thompson PD, Berardelli A, Rothwell JC, Day BL, Dick JP, Benecke R, et al. The coexistence of bradykinesia and chorea in Huntington’s disease and its implications for theories of basal ganglia control of movement. Brain 1988;111 Pt 2:223–44

    PubMed  Google Scholar 

  56. Podoll K, Caspary P, Lange HW, Noth J. Language functions in Huntington’s disease. Brain 1988;111 Pt 6:1475–503

    PubMed  Google Scholar 

  57. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985;44 6:559–77

    PubMed  Google Scholar 

  58. Myers RH, Vonsattel JP, Stevens TJ, Cupples LA, Richardson EP, Martin JB, et al. Clinical and neuropathologic assessment of severity in Huntington’s disease. Neurology 1988;38 3:341–7

    PubMed  Google Scholar 

  59. Kowall NW, Ferrante RJ, Martin JB. Patterns of cell loss in Huntington’s disease. Trends Neurosci 1987;10 1:24–9

    Article  Google Scholar 

  60. Ferrante RJ, Kowall NW, Beal MF, Richardson EP Jr., Bird ED, Martin JB. Selective sparing of a class of striatal neurons in Huntington’s disease. Science 1985;230 4725:561–3

    PubMed  Google Scholar 

  61. Buck SH, Burks TF, Brown MR, Yamamura HI. Reduction in basal ganglia and substantia nigra substance P levels in Huntington’s disease. Brain Res 1981;209 2:464–9

    Article  PubMed  Google Scholar 

  62. Richfield EK, Maguire-Zeiss KA, Vonkeman HE, Voorn P. Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s disease patients. Ann Neurol 1995;38 6:852–61

    Article  PubMed  Google Scholar 

  63. Storey E, Beal MF. Neurochemical substrates of rigidity and chorea in Huntington’s disease. Brain 1993;116 Pt 5:1201–22

    PubMed  Google Scholar 

  64. Ferrante RJ, Kowall NW, Richardson EP Jr. Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J Neurosci 1991;11 12:3877–87

    PubMed  Google Scholar 

  65. Hedreen JC, Folstein SE. Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 1995;54 1:105–20

    PubMed  Google Scholar 

  66. Beal MF, Mazurek MF, Ellison DW, Swartz KJ, McGarvey U, Bird ED, et al. Somatostatin and neuropeptide Y concentrations in pathologically graded cases of Huntington’s disease. Ann Neurol 1988;23 6:562–9

    Article  PubMed  Google Scholar 

  67. Bird ED, Iversen LL. Neurochemical findings in Huntington’s chorea. Essays Neurochem Neuropharmacol 1977;1:177–95

    PubMed  Google Scholar 

  68. Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A 1991;88 17:7797–801

    PubMed  Google Scholar 

  69. Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron 1992;8 1:3–11

    Article  PubMed  Google Scholar 

  70. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 1993;13 6:2651–61

    PubMed  Google Scholar 

  71. Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP Jr. Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 1987;46 1:12–27

    PubMed  Google Scholar 

  72. Spokes EG. Neurochemical alterations in Huntington’s chorea: a study of post-mortem brain tissue. Brain 1980;103 1:179–210

    PubMed  Google Scholar 

  73. McGeer PL, McGeer EG. Enzymes associated with the metabolism of catecholamines, acetylcholine and gaba in human controls and patients with Parkinson’s disease and Huntington’s chorea. J Neurochem 1976;26 1:65–76

    PubMed  Google Scholar 

  74. Kish SJ, Shannak K, Hornykiewicz O. Elevated serotonin and reduced dopamine in subregionally divided Huntington’s disease striatum. Ann Neurol 1987;22 3:386–9

    Article  PubMed  Google Scholar 

  75. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;277 5334:1990–3

    Article  PubMed  Google Scholar 

  76. Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology 1992;42 4:733–8

    PubMed  Google Scholar 

  77. Martin JJ, Van de Vyver FL, Scholte HR, Roodhooft AM, Ceuterick C, Martin L, et al. Defect in succinate oxidation by isolated muscle mitochondria in a patient with symmetrical lesions in the basal ganglia. J Neurol Sci 1988;84 2–3:189–200

    Article  PubMed  Google Scholar 

  78. Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot E, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 1995;11 2:144–9

    Article  PubMed  Google Scholar 

  79. He F, Zhang S, Qian F, Zhang C. Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3-nitropropionic acid). Neurology 1995;45 12:2178–83

    PubMed  Google Scholar 

  80. Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS. Safety of intrastriatal neurotransplantation for Huntington’s disease patients. Exp Neurol 1998;149 1:97–108

    Article  PubMed  Google Scholar 

  81. Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 2000;356 9246:1975–9

    Article  PubMed  Google Scholar 

  82. Bloch J, Bachoud-Levi AC, Deglon N, Lefaucheur JP, Winkel L, Palfi S, et al. Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 2004;15 10:968–75

    Article  PubMed  Google Scholar 

  83. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28 5:897–916

    PubMed  Google Scholar 

  84. Maziere B, Maziere M. Positron emission tomography studies of brain receptors. Fundam Clin Pharmacol 1991;5 1:61–91

    PubMed  Google Scholar 

  85. Stocklin G. Tracers for metabolic imaging of brain and heart. Radiochemistry and radiopharmacology. Eur J Nucl Med 1992;19 7:527–51

    PubMed  Google Scholar 

  86. Shiue CY, Welch MJ. Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiol Clin North Am 2004;42 6:1033–53, viii

    Article  PubMed  Google Scholar 

  87. Hamill TG, Krause S, Ryan C, Bonnefous C, Govek S, Seiders TJ, et al. Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers. Synapse 2005;56 4:205–16

    Article  PubMed  Google Scholar 

  88. Brooks DJ. PET studies on the function of dopamine in health and Parkinson’s disease. Ann N Y Acad Sci 2003;991:22–35

    PubMed  Google Scholar 

  89. Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 1999;2 12:1137–40

    Article  PubMed  Google Scholar 

  90. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9 5:589–95

    Article  PubMed  Google Scholar 

  91. Rascol O, Sabatini U, Chollet F, Celsis P, Montastruc JL, Marc-Vergnes JP, et al. Supplementary and primary sensory motor area activity in Parkinson’s disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch Neurol 1992;49 2:144–8

    PubMed  Google Scholar 

  92. Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, et al. Evidence for striatal dopamine release during a video game. Nature 1998;393 6682:266–8

    Article  PubMed  Google Scholar 

  93. de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 2004;127 Pt 12:2747–54

    Article  PubMed  Google Scholar 

  94. Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 1997;120 Pt 12:2187–95

    Article  PubMed  Google Scholar 

  95. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005;128 Pt 6:1314–22

    Article  PubMed  Google Scholar 

  96. Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J. Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 1982;12 5:425–34

    Article  PubMed  Google Scholar 

  97. Garnett ES, Firnau G, Nahmias C, Carbotte R, Bartolucci G. Reduced striatal glucose consumption and prolonged reaction time are early features in Huntington’s disease. J Neurol Sci 1984;65 2:231–7

    Article  PubMed  Google Scholar 

  98. Kuwert T, Lange HW, Boecker H, Titz H, Herzog H, Aulich A, et al. Striatal glucose consumption in chorea-free subjects at risk of Huntington’s disease. J Neurol 1993;241 1:31–6

    Article  PubMed  Google Scholar 

  99. Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, et al. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 1987;316 7:357–62

    PubMed  Google Scholar 

  100. Seibyl J, Jennings D, Tabamo R, Marek K. Neuroimaging trials of Parkinson’s disease progression. J Neurol 2004;251 Suppl 7:vII9–13

    Article  PubMed  Google Scholar 

  101. Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 2003;54 1:93–101

    Article  PubMed  Google Scholar 

  102. Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 1995;332 17:1118–24

    Article  PubMed  Google Scholar 

  103. Mendez I, Sanchez-Pernaute R, Cooper O, Vinuela A, Ferrari D, Bjorklund L, et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 2005;128 Pt 7:1498–510

    Article  PubMed  Google Scholar 

  104. Wenning GK, Odin P, Morrish P, Rehncrona S, Widner H, Brundin P, et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 1997;42 1:95–107

    Article  PubMed  Google Scholar 

  105. Levivier M, Dethy S, Rodesch F, Peschanski M, Vandesteene A, David P, et al. Intracerebral transplantation of fetal ventral mesencephalon for patients with advanced Parkinson’s disease. Methodology and 6-month to 1-year follow-up in 3 patients. Stereotact Funct Neurosurg 1997;69 1–4 Pt 2:99–111

    PubMed  Google Scholar 

  106. Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol 2002;52 5:628–34

    Article  PubMed  Google Scholar 

  107. Cochen V, Ribeiro MJ, Nguyen JP, Gurruchaga JM, Villafane G, Loc’h C, et al. Transplantation in Parkinson’s disease: PET changes correlate with the amount of grafted tissue. Mov Disord 2003;18 8:928–32

    Article  PubMed  Google Scholar 

  108. Piccini P, Lindvall O, Bjorklund A, Brundin P, Hagell P, Ceravolo R, et al. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol 2000;48 5:689–95

    Article  PubMed  Google Scholar 

  109. Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, et al. Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 2004;127 Pt 1:65–72

    Article  PubMed  Google Scholar 

  110. Leergaard TB, Bjaalie JG, Devor A, Wald LL, Dale AM. In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing. NeuroImage 2003;20 3:1591–600

    Article  PubMed  Google Scholar 

  111. Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13 3:981–9

    PubMed  Google Scholar 

  112. Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002;3 2:142–51

    Article  PubMed  Google Scholar 

  113. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176 2:439–45

    PubMed  Google Scholar 

  114. Mori S, van Zijl PC. Fiber tracking: principles and strategies—a technical review. NMR Biomed 2002;15 7–8:468–80

    Article  PubMed  Google Scholar 

  115. Geninatti Crich S, Barge A, Battistini E, Cabella C, Coluccia S, Longo D, et al. Magnetic resonance imaging visualization of targeted cells by the internalization of supramolecular adducts formed between avidin and biotinylated Gd3+ chelates. J Biol Inorg Chem 2005;10 1:78–86

    Article  PubMed  Google Scholar 

  116. O’Neill J, Schuff N, Marks WJ Jr, Feiwell R, Aminoff MJ, Weiner MW. Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson’s disease. Mov Disord 2002;17 5:917–27

    Article  PubMed  Google Scholar 

  117. Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA. Parkinson’s disease is associated with hippocampal atrophy. Mov Disord 2003;18 7:784–90

    Article  PubMed  Google Scholar 

  118. Summerfield C, Junque C, Tolosa E, Salgado-Pineda P, Gomez-Anson B, Marti MJ, et al. Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 2005;62 2:281–5

    Article  PubMed  Google Scholar 

  119. Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 2002;73 5:517–23

    Article  PubMed  Google Scholar 

  120. Schocke MF, Seppi K, Esterhammer R, Kremser C, Mair KJ, Czermak BV, et al. Trace of diffusion tensor differentiates the Parkinson variant of multiple system atrophy and Parkinson’s disease. NeuroImage 2004;21 4:1443–51

    Article  PubMed  Google Scholar 

  121. Eckert T, Sailer M, Kaufmann J, Schrader C, Peschel T, Bodammer N, et al. Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging. NeuroImage 2004;21 1:229–35

    Article  PubMed  Google Scholar 

  122. Mascalchi M, Lolli F, Della Nave R, Tessa C, Petralli R, Gavazzi C, et al. Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology 2004;232 3:867–73

    PubMed  Google Scholar 

  123. Savoiardo M, Strada L, Oliva D, Girotti F, D’Incerti L. Abnormal MRI signal in the rigid form of Huntington’s disease. J Neurol Neurosurg Psychiatry 1991;54 10:888–91

    PubMed  Google Scholar 

  124. Oliva D, Carella F, Savoiardo M, Strada L, Giovannini P, Testa D, et al. Clinical and magnetic resonance features of the classic and akinetic-rigid variants of Huntington’s disease. Arch Neurol 1993;50 1:17–9

    PubMed  Google Scholar 

  125. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 1993;43 12:2689–95

    PubMed  Google Scholar 

  126. Jenkins BG, Rosas HD, Chen YC, Makabe T, Myers R, MacDonald M, et al. 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology 1998;50 5:1357–65

    PubMed  Google Scholar 

  127. Brennan WA Jr, Bird ED, Aprille JR. Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 1985;44 6:1948–50

    PubMed  Google Scholar 

  128. Hoang TQ, Bluml S, Dubowitz DJ, Moats R, Kopyov O, Jacques D, et al. Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington’s and Parkinson’s diseases. Neurology 1998;50 4:1033–40

    PubMed  Google Scholar 

  129. Alexander E III, Kooy HM, van Herk M, Schwartz M, Barnes PD, Tarbell N, et al. Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy. J Neurosurg 1995;83 2:271–6

    PubMed  Google Scholar 

  130. Donovan T, Fryer TD, Pena A, Watts C, Carpenter TA, Pickard JD. Stereotactic MR imaging for planning neural transplantation: a reliable technique at 3 Tesla? Br J Neurosurg 2003;17 5:443–9

    Article  PubMed  Google Scholar 

  131. Kondziolka D, Dempsey PK, Lunsford LD, Kestle JR, Dolan EJ, Kanal E, et al. A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination. Neurosurgery 1992;30 3:402–6; discussion 406–407

    PubMed  Google Scholar 

  132. Carter DA, Parsai EI, Ayyangar KM. Accuracy of magnetic resonance imaging stereotactic coordinates with the Cosman-Roberts-Wells frame. Stereotact Funct Neurosurg 1999;72 1:35–46

    Article  PubMed  Google Scholar 

  133. Bluml S, Kopyov O, Jacques S, Ross BD. Activation of neurotransplants in humans. Exp Neurol 1999;158 1:121–5

    Article  PubMed  Google Scholar 

  134. Ross BD, Hoang TQ, Bluml S, Dubowitz D, Kopyov OV, Jacques DB, et al. In vivo magnetic resonance spectroscopy of human fetal neural transplants. NMR Biomed 1999;12 4:221–36

    Article  PubMed  Google Scholar 

  135. Brooks DJ. Positron emission tomography and single-photon emission computed tomography in central nervous system drug development. NeuroRx 2005;2 2:226–36

    Article  PubMed  Google Scholar 

  136. Tavitian B. Oligonucleotides as radiopharmaceuticals. Ernst Schering Res Found Workshop 2005;(49):1–34

  137. Mezey E, Dehejia A, Harta G, Papp MI, Polymeropoulos MH, Brownstein MJ. Alpha synuclein in neurodegenerative disorders: murderer or accomplice? Nat Med 1998;4 7:755–7

    Article  PubMed  Google Scholar 

  138. Goldberg MS, Lansbury PT Jr. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2000;2 7:E115–9

    Article  PubMed  Google Scholar 

  139. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 2002;10 1:24–35

    Article  PubMed  Google Scholar 

  140. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55 3:306–19

    Article  PubMed  Google Scholar 

  141. Nordberg A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol 2004;3 9:519–27

    Article  PubMed  Google Scholar 

  142. Brooks DJ. Neuroimaging in Parkinson’s disease. NeuroRx 2004;1 2:243–54

    Article  PubMed  Google Scholar 

  143. Eckert T, Eidelberg D. Neuroimaging and therapeutics in movement disorders. NeuroRx 2005;2 2:361–71

    Article  PubMed  Google Scholar 

  144. Gruetter R, Seaquist ER, Kim S, Ugurbil K. Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 1998;20 4–5:380–8

    Article  PubMed  Google Scholar 

  145. Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, et al. Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 2002;22 5:1523–31

    PubMed  Google Scholar 

  146. Boumezbeur F, Besret L, Valette J, Gregoire MC, Delzescaux T, Maroy R, et al. Glycolysis versus TCA cycle in the primate brain as measured by combining 18F-FDG PET and 13C-NMR. J Cereb Blood Flow Metab 2005 (Epub ahead of print)

  147. Higuchi M, Iwata N, Matsuba Y, Sato K, Sasamoto K, Saido TC. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 2005;8 4:527–33

    Article  PubMed  Google Scholar 

  148. Dingman S, Mack D, Branch S, Thomas R, Guo C, Branch C. The fate of perfluoro-tagged metabolites of L-DOPA in mice brains. J Immunoassay Immunochem 2004;25 4:359–70

    Article  PubMed  Google Scholar 

  149. Dingman S, Snyder-Leiby T, Mack DJ, Thomas R, Guo C. Enzymatic assay for perfluoro-tagged metabolites of l-DOPA using crude lysate from E. coli transformed with pKKAADCII. Appl Microbiol Biotechnol 2004;64 4:556–9

    Article  PubMed  Google Scholar 

  150. Piccini P, Pavese N, Brooks DJ. Endogenous dopamine release after pharmacological challenges in Parkinson’s disease. Ann Neurol 2003;53 5:647–53

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Council (2003-33SX-14552-01A, 2003-33P-14778-01A, K2005-33IT-15332-1A, K2005-33X-14552-03A), NeuroNE Network of Excellence program of the European Union (LSHM-CT-2004-512039) and the Foundation pour la Recherche Médicale and the Commissariat à l’Energie Atomique. N.B. is a post-doctoral fellow supported by the Marie-Curie training program of the European Union. The authors acknowledge the contribution of V. Gaura, G. Douaud, M.J. Ribeiro, P. Remy, V. Lebon and E.-M. Larsson in the realisation of Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Kirik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirik, D., Breysse, N., Björklund, T. et al. Imaging in cell-based therapy for neurodegenerative diseases. Eur J Nucl Med Mol Imaging 32 (Suppl 2), S417–S434 (2005). https://doi.org/10.1007/s00259-005-1909-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1909-6

Keywords

Navigation