Skip to main content
Log in

Singularities in cascade models of the Euler equation

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The formation of singularities in the three-dimensional Euler equation is investigated. This is done by restricting the number of Fourier modes to a set which allows only for local interactions in wave number space. Starting from an initial large-scale energy distribution, the energy rushes towards smaller scales, forming a universal front independent of initial conditions. The front results in a singularity of the vorticity in finite time, and has scaling form as function of the time difference from the singularity. Using a simplified model, we compute the values of the exponents and the shape of the front analytically. The results are in good agreement with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, “Statistical hydrodynamics”, Nuovo Cimento 6, 279 (1949)

  2. R. H. Morf, S. A. Orszag, and U. Frisch, “Spontaneous Singularity in Three-Dimensional, Inviscid, Incompressible Flow”, Phys. Rev. Lett. 44, 572 (1980)

    Google Scholar 

  3. M.E. Brachet et al., “Small-scale structure of the Taylor-Green vortex”, J. Fluid Mech. 130, 411 (1983)

    Google Scholar 

  4. E. D. Siggia, “Collapse and amplification of a vortex filament”, Phys. Fluids 28, 794 (1985)

    Google Scholar 

  5. A. Pumir and E. D. Siggia, “Collapsing solutions of the 3-D Euler equations”, Phys. Fluids A 2, 220 (1990)

    Google Scholar 

  6. R. Grauer and T. C. Sideris, “Numerical Computation of 3D Incompressible Ideal Fluids with Swirl”, Phys. Rev. Lett. 67, 3511 (1991)

    Google Scholar 

  7. A. Pumir and E. D. Siggia, “Development of singular solutions of the axisymmetric Euler equation”, Phys. Fluids A 4, 1472 (1992)

    Google Scholar 

  8. M. J. Shelley, D. I. Meiron, and S. A. Orszag, “Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes”, J. Fluid Mech. 246, 613 (1993)

    Google Scholar 

  9. R. M. Kerr, “Evidence for a singularity of the three-dimensional, incompressible Euler equations”, Phys. Fluids A 5, 1725 (1993)

    Google Scholar 

  10. M.E. Brachet et al., “Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows”, Phys. Fluids A 4, 2845 (1992)

    Google Scholar 

  11. J. Eggers, “Universal pinching of 3D Axisymmetric Free-Surface Flow”, Phys. Rev. Lett. 71, 3458 (1993)

    Google Scholar 

  12. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous liquids”, Dokl. Akad. Nauk SSSR 30, 9 (1941)

    Google Scholar 

  13. J. Eggers and S. Grossmann, “Does deterministic chaos imply intermittency in fully developed turbulence?”, Phys. Fluids A 3, 1985 (1991)

  14. S. Grossmann and D. Lohse, “Intermittency in the Navier-Stokes Dynamics”, Z. Phys. B 89, 11 (1992)

    Google Scholar 

  15. S. Grossmann and D. Lohse, “Intermittency exponents”, Europhys. Lett. 21, 201 (1993)

  16. S. Grossmann and D. Lohse, “Scale resolved intermittency in turbulence”, Phys. Fluids 6, 611 (1994)

    Google Scholar 

  17. C. Uhlig and J. Eggers, “Local coupling of shell models leads to anomalous scaling”, Z. Phys. B in press (1997)

  18. M. Nelkin, “What do we know about self-similarity in fluid turbulence?”, J. Stat. Phys. 54, 1 (1989)

    Google Scholar 

  19. J. Eggers, “Multifractal scaling from nonlinear turbulence dynamics: analytical methods”, Phys. Rev. E 50, 285 (1994)

    Google Scholar 

  20. A. M. Obukhov, “Some general properties of equations describing the dynamics of the atmosphere”, Atmos. Ocean. Phys. 7, 471 (1971)

    Google Scholar 

  21. E. B. Gledzer, “Systems of hydrodynamic type admitting two quadratic integrals of motion”, Sov. Phys. Dokl. 18, 216 (1973)

    Google Scholar 

  22. M. Yamada and K. Ohkitami, “Lyapunov spectrum of a chaotic model of three-dimensional turbulence”, J. Phys. Soc. Jpn 56, 4210 (1987)

    Google Scholar 

  23. M. H. Jensen, G. Paladin, and A. Vulpiani, “Intermittency in a cascade model for three-dimensional turbulence”, Phys. Rev. A 43, 798 (1991).

    Google Scholar 

  24. L. P. Kadanoff, D. Lohse, J. Wang, and R. Benzi, “Scaling and Dissipation in the GOY shell model”, Phys. Fluids 7, 617 (1995)

    Google Scholar 

  25. N. Schörghofer, L. P. Kadanoff, and D. Lohse, “How the viscous subrange determines inertial range properties in turbulence shell models”, Physica D 88, 40 (1995)

    Google Scholar 

  26. U. Frisch, “Turbulence”, (Cambridge University Press, 1st ed., 1995)

  27. J.T. Beale, T. Kato, and A. Majda, “Remarks on the breakdown of smooth solutions for the 3D Euler equations”, Comm. Math. Phys. 94, 61 (1984)

    Google Scholar 

  28. S. Grossmann, D. Lohse, and A. Reeh, “Developed Turbulence: From Full Simulations to Full Mode Reductions”, Phys. Rev. Lett. 77, 5369 (1996)

    Google Scholar 

  29. G. L. Eyink, “Energy dissipation without viscosity in ideal hydrodynamics, I”, Physica D 78, 222 (1994)

    Google Scholar 

  30. G. L. Eyink, “Local energy flux and the refined similarity hypothesis”, J. Stat. Phys. 78, 335 (1995)

    Google Scholar 

  31. Barenblatt, G. I., Scaling, self-similarity, and intermediate asymptotics, (Cambridge University Press, 1996)

  32. A. Guderley, “Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse”, Luftfahrtforschung 19, 302 (1942)

  33. D. T. Papageorgiou, “On the breakup of viscous liquid threads”, Phys. Fluids 7, 1529 (1995)

    Google Scholar 

  34. W. van Saarloos, “Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection”, Phys. Rev. A 37, 211 (1988)

    Google Scholar 

  35. D. G. Aronson, “The porous medium equation”, in: Nonlinear Diffusion Problems, edited by A. Fasano and M.Primicario, Lecture Notes in Mathematics, (Springer, 1986)

  36. T. Dombre and J.-L. Gilson, “Intermittency, chaos and singular fluctuations in the mixed Obukhov-Novikov shell model of turbulence”, submitted to Physica D (1997)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlig, C., Eggers, J. Singularities in cascade models of the Euler equation. Z. Phys. B - Condensed Matter 103, 69–78 (1997). https://doi.org/10.1007/s002570050337

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002570050337

PACS

Navigation