Skip to main content

Advertisement

Log in

3D-DESS MRI with CAIPIRINHA two- and fourfold acceleration for quantitatively assessing knee cartilage morphology

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to assess the diagnostic image quality and compare the knee cartilage segmentation results using a controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-accelerated 3D-dual echo steady-state (DESS) research package sequence in the knee.

Materials and Methods

A total of 64 subjects underwent both two- and fourfold CAIPIRINHA-accelerated 3D-DESS and DESS without parallel acceleration technique of the knee on a 3.0 T system. Two musculoskeletal radiologists evaluated the images independently for image quality and diagnostic capability following randomization and anonymization. The consistency of automatic segmentation results between sequences was explored using an automatic knee cartilage segmentation research application. The descriptive statistics and inter-observer and inter-method concordance of various acceleration sequences were investigated. P values < .05 were considered significant.

Results

For image quality evaluation, the image signal-to-noise ratio and contrast-to-noise ratio decreased with the decrease in scanning time. However, it is accompanied by the reduction of artifacts. Using 3D-DESS without parallel acceleration technique as the standard for cartilage grading diagnosisand the diagnostic agreement of two- and fourfold CAIPIRINHA-accelerated 3D-DESS was good, kappa value was 0.860 (P < .001) and 0.804 (p < 0.001), respectively. Regarding cartilage defects, the sensitivity and specificity of the twofold acceleration 3D-CAIPIRINHA-DESS were 95.56% and 97.70%, and the fourfold CAIPIRINHA-accelerated 3D-DESS were 91.49% and 97.65%, respectively. The intraclass correlation coefficients of various sequences in cartilage segmentation were almost all greater than 0.9.

Conclusion

The CAIPIRINHA-accelerated 3D-DESS sequence maintained comparable diagnostic and segmentations performance of knee cartilage after a 60% scan time reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

Abbreviations

CAIPIRINHA:

Controlled aliasing in parallel imaging results in higher acceleration

DESS:

Dual echo steady-state

2D:

2-Dimensional

3D:

3-Dimensional

OA:

Osteoarthritis

MRI:

Magnetic resonance imaging

FISP:

Fast imaging with steady-state precession

PSIF:

Reverse fast imaging with steady state precession

TE:

Echo time

TR:

Repetition time

FSE:

Fast spin echo

VIBE:

Volumetric interpolated breath-hold examination

TSE:

Turbo spin echo

SNR:

Signal noise ratio

CNR:

Contrast noise ratio

ROI:

Region of interest

FOV:

Field of view

SI:

Signal intensity

SIT:

Signal intensity of each other tissue

SD:

Standard deviation of background noise

DICOM:

Digital imaging and communications in medicine

ICC:

Intraclass correlation coefficient

References

  1. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet (London, England). 2015;386(9991):376–87.

    Article  PubMed  CAS  Google Scholar 

  2. Fransen M, Bridgett L, March L, Hoy D, Penserga E, Brooks P. The epidemiology of osteoarthritis in Asia. Int J Rheum Dis. 2011;14(2):113–21.

    Article  PubMed  Google Scholar 

  3. Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage. 2007;15(7):789–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gold GE, Burstein D, Dardzinski B, Lang P, Boada F, Mosher T. MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers. Osteoarthritis Cartilage. 2006;14 Suppl A:A76-86.

    Article  PubMed  Google Scholar 

  5. Kijowski R. 3D MRI of articular cartilage. Semin Musculoskelet Radiol. 2021;25(3):397–408.

    Article  PubMed  Google Scholar 

  6. Oei EHG, van Zadelhoff TA, Eijgenraam SM, Klein S, Hirvasniemi J, van der Heijden RA. 3D MRI in osteoarthritis. Semin Musculoskelet Radiol. 2021;25(3):468–79.

    Article  PubMed  Google Scholar 

  7. Wirth W, Nevitt M, Hellio Le Graverand MP, Benichou O, Dreher D, Davies RY, et al. Sensitivity to change of cartilage morphometry using coronal FLASH, sagittal DESS, and coronal MPR DESS protocols–comparative data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage. 2010;18(4):547–54.

    Article  PubMed  CAS  Google Scholar 

  8. Eckstein F, Hudelmaier M, Wirth W, Kiefer B, Jackson R, Yu J, et al. Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis. 2006;65(4):433–41.

    Article  PubMed  CAS  Google Scholar 

  9. Wright KL, Harrell MW, Jesberger JA, Landeras L, Nakamoto DA, Thomas S, et al. Clinical evaluation of CAIPIRINHA: comparison against a GRAPPA standard. J Magnet Reson Imaging. 2014;39(1):189–94.

    Article  Google Scholar 

  10. Hu J, Xu B, Cao J, Yang R, Zhang H, Guo H, et al. Application value of CAIPIRINHA-VIBE with MOCO in liver magnetic resonance examination. Eur J Radiol. 2021;140: 109739.

    Article  PubMed  Google Scholar 

  11. Fritz B, Bensler S, Thawait GK, Raithel E, Stern SE, Fritz J. CAIPIRINHA-accelerated 10-min 3D TSE MRI of the ankle for the diagnosis of painful ankle conditions: performance evaluation in 70 patients. Eur Radiol. 2019;29(2):609–19.

    Article  PubMed  Google Scholar 

  12. Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol. 2016;51(10):609–17.

    Article  PubMed  Google Scholar 

  13. Van Dyck P, Smekens C, Roelant E, Vande Vyvere T, Snoeckx A, De Smet E. 3D CAIPIRINHA SPACE versus standard 2D TSE for routine knee MRI: a large-scale interchangeability study. Eur Radiol. 2022;32(9):6456–67.

    Article  PubMed  Google Scholar 

  14. Kalia V, Fritz B, Johnson R, Gilson WD, Raithel E, Fritz J. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons. Eur Radiol. 2017;27(9):3652–61.

    Article  PubMed  Google Scholar 

  15. Hou B, Li Y, Xiong Y, Morelli JN, Wang J, Liu C, et al. Comparison of CAIPIRINHA-accelerated 3D fat-saturated-SPACE MRI with 2D MRI sequences for the assessment of shoulder pathology. Eur Radiol. 2022;32(1):593–601.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang P, Yu B, Zhang R, Chen X, Shao S, Zeng Y, et al. Longitudinal study of the morphological and T2* changes of knee cartilages of marathon runners using prototype software for automatic cartilage segmentation. Br J Radiol. 2021;94(1119):20200833.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu L, Liu H, Zhen Z, Zheng Y, Zhou X, Raithel E, et al. Analysis of knee joint injury caused by physical training of freshmen students based on 3T MRI and automatic cartilage segmentation technology: a prospective study. Front Endocrinol. 2022;13: 839112.

    Article  Google Scholar 

  18. Hou W, Zhao J, He R, Li J, Ou Y, Du M, et al. Quantitative measurement of cartilage volume with automatic cartilage segmentation in knee osteoarthritis. Clin Rheumatol. 2021;40(5):1997–2006.

    Article  PubMed  Google Scholar 

  19. Zhang P, Zhang RX, Chen XS, Zhou XY, Raithel E, Cui JL, et al. Clinical validation of the use of prototype software for automatic cartilage segmentation to quantify knee cartilage in volunteers. BMC Musculoskelet Disord. 2022;23(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Juras V, Szomolanyi P, Schreiner MM, Unterberger K, Kurekova A, Hager B, et al. Reproducibility of an automated quantitative MRI assessment of low-grade knee articular cartilage lesions. Cartilage. 2021;13(1_suppl):646s–57s.

    Article  PubMed  CAS  Google Scholar 

  21. Ramme AJ, Guss MS, Vira S, Vigdorchik JM, Newe A, Raithel E, et al. Evaluation of automated volumetric cartilage quantification for hip preservation surgery. J Arthroplasty. 2016;31(1):64–9.

    Article  PubMed  Google Scholar 

  22. Recht MP, Kramer J, Marcelis S, Pathria MN, Trudell D, Haghighi P, et al. Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology. 1993;187(2):473–8.

    Article  PubMed  CAS  Google Scholar 

  23. Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans Med Imaging. 2010;29(1):55–64.

    Article  PubMed  Google Scholar 

  24. Ebrahimkhani S, Jaward MH, Cicuttini FM, Dharmaratne A, Wang Y, de Herrera AGS. A review on segmentation of knee articular cartilage: from conventional methods towards deep learning. Artif Intell Med. 2020;106: 101851.

    Article  PubMed  Google Scholar 

  25. Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage. 2006;14 Suppl A:A46-75.

    Article  PubMed  CAS  Google Scholar 

  26. Martel-Pelletier J, Paiement P, Pelletier JP. Magnetic resonance imaging assessments for knee segmentation and their use in combination with machine/deep learning as predictors of early osteoarthritis diagnosis and prognosis. Ther Adv Musculoskelet Dis. 2023;15:1759720x231165560.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Friedrich KM, Reiter G, Kaiser B, Mayerhöfer M, Deimling M, Jellus V, et al. High-resolution cartilage imaging of the knee at 3T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol. 2011;78(3):398–405.

    Article  PubMed  Google Scholar 

  28. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16(12):1433–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Liu L, Wu G. Three-dimensional SPACE MR with CAIPIRINHA fourfold acceleration for assessing long head of biceps tendon. Acta Radiol (Stockholm, Sweden : 1987). 2021:2841851211055324.

  30. Chaudhari AS, Stevens KJ, Wood JP, et al. Utility of deep learning super-resolution in the context of osteoarthritis MRI biomarkers[J]. J Magn Reson Imaging. 2020;51(3):768–79.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wu or Xiaoming Li.

Ethics declarations

Conflicts of interest

Xiaoyue Zhou is an employee of Siemens Healthineers Ltd., Shanghai, China. Qiong Zhang is an employee of Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China., Esther Raithel is an employee of Siemens Healthcare GmbH, Erlangen, Germany. The remaining authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, D., Zhou, X., Hou, B. et al. 3D-DESS MRI with CAIPIRINHA two- and fourfold acceleration for quantitatively assessing knee cartilage morphology. Skeletal Radiol (2024). https://doi.org/10.1007/s00256-024-04605-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00256-024-04605-7

Keywords

Navigation