Skip to main content

Advertisement

Log in

Musculoskeletal imaging of senescence

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Senescent cells play a vital role in the pathogenesis of musculoskeletal (MSK) diseases, such as chronic inflammatory joint disorders, rheumatoid arthritis (RA), and osteoarthritis (OA). Cellular senescence in articular joints represents a response of local cells to persistent stress that leads to cell-cycle arrest and enhanced production of inflammatory cytokines, which in turn perpetuates joint damage and leads to significant morbidities in afflicted patients. It has been recently discovered that clearance of senescent cells by novel “senolytic” therapies can attenuate the chronic inflammatory microenvironment of RA and OA, preventing further disease progression and supporting healing processes. To identify patients who might benefit from these new senolytic therapies and monitor therapy response, there is an unmet need to identify and map senescent cells in articular joints and related musculoskeletal tissues. To fill this gap, new imaging biomarkers are being developed to detect and characterize senescent cells in human joints and musculoskeletal tissues. This review article will provide an overview of these efforts. New imaging biomarkers for senescence cells are expected to significantly improve the specificity of state-of-the-art imaging technologies for diagnosing musculoskeletal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Collaborators GBDO. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5(9):e508–22.

    Article  Google Scholar 

  2. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.

    Article  PubMed  Google Scholar 

  3. Hunziker EB. Articular cartilage repair: problems and perspectives. Biorheology. 2000;37(1–2):163–4.

    CAS  PubMed  Google Scholar 

  4. Kinner B, Capito RM, Spector M. Regeneration of articular cartilage. Adv Biochem Eng Biotechnol. 2005;94:91–123.

    CAS  PubMed  Google Scholar 

  5. Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci. 2017;72(6):780–5.

    CAS  PubMed  Google Scholar 

  6. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jordan JM, De Roos AJ, Renner JB, Luta G, Cohen A, Craft N, et al. A case-control study of serum tocopherol levels and the alpha- to gamma-tocopherol ratio in radiographic knee osteoarthritis: the Johnston County Osteoarthritis Project. Am J Epidemiol. 2004;159(10):968–77.

    Article  PubMed  Google Scholar 

  8. Diez-Villares S, Garcia-Varela L, Antas SG, Caeiro JR, Carpintero-Fernandez P, Mayan MD, et al. Quantitative PET tracking of intra-articularly administered (89)Zr-peptide-decorated nanoemulsions. J Control Release. 2023;356:702–13.

    Article  CAS  PubMed  Google Scholar 

  9. Faust HJ, Zhang H, Han J, Wolf MT, Jeon OH, Sadtler K, et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J Clin Invest. 2020;130(10):5493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nogueira-Recalde U, Lorenzo-Gomez I, Blanco FJ, Loza MI, Grassi D, Shirinsky V, et al. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine. 2019;45:588–605.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yan S, Dong W, Li Z, Wei J, Han T, Wang J, et al. Metformin regulates chondrocyte senescence and proliferation through microRNA-34a/SIRT1 pathway in osteoarthritis. J Orthop Surg Res. 2023;18(1):198.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang H, Chen C, Chen H, Duan X, Li J, Zhou Y, et al. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging (Albany NY). 2020;12(13):12750–70.

    Article  CAS  PubMed  Google Scholar 

  13. Min HK, Kim SH, Won JY, Kim KW, Lee JY, Lee SH, et al. Dasatinib, a selective tyrosine kinase inhibitor, prevents joint destruction in rheumatoid arthritis animal model. Int J Rheum Dis. 2023;26(4):718–26.

    Article  CAS  PubMed  Google Scholar 

  14. Javadi F, Ahmadzadeh A, Eghtesadi S, Aryaeian N, Zabihiyeganeh M, Rahimi Foroushani A, et al. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: a double-blind, randomized controlled trial. J Am Coll Nutr. 2017;36(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  15. Matsuno H, Nakamura H, Katayama K, Hayashi S, Kano S, Yudoh K, et al. Effects of an oral administration of glucosamine-chondroitin-quercetin glucoside on the synovial fluid properties in patients with osteoarthritis and rheumatoid arthritis. Biosci Biotechnol Biochem. 2009;73(2):288–92.

    Article  CAS  PubMed  Google Scholar 

  16. Fessler J, Husic R, Schwetz V, Lerchbaum E, Aberer F, Fasching P, et al. Senescent T-cells promote bone loss in rheumatoid arthritis. Front Immunol. 2018;9:95.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang B, Chen Y, Zhao P, Yan W, Huang X, Jiang W, et al. MiR-601-induced BMSCs senescence accelerates steroid-induced osteonecrosis of the femoral head progression by targeting SIRT1. Cell Mol Life Sci. 2023;80(9):261.

    Article  CAS  PubMed  Google Scholar 

  18. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farr JN, Rowsey JL, Eckhardt BA, Thicke BS, Fraser DG, Tchkonia T, et al. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis: evidence in young adult mice and older humans. J Bone Miner Res. 2019;34(8):1407–18.

    Article  CAS  PubMed  Google Scholar 

  20. Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res. 2016;31(11):1920–9.

    Article  CAS  PubMed  Google Scholar 

  21. Saul D, Monroe DG, Rowsey JL, Kosinsky RL, Vos SJ, Doolittle ML, et al. Modulation of fracture healing by the transient accumulation of senescent cells. Elife. 2021; 10.

  22. Bajada S, Marshall MJ, Wright KT, Richardson JB, Johnson WE. Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone. 2009;45(4):726–35.

    Article  CAS  PubMed  Google Scholar 

  23. Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 2023;13(2):410–31.

    Article  CAS  PubMed  Google Scholar 

  24. Schosserer M, Grillari J, Breitenbach M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front Oncol. 2017;7:278.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J Clin Invest. 2018;128(4):1229–37.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martin JA, Brown TD, Heiner AD, Buckwalter JA. Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res. 2004;(427 Suppl):S96–103.

  27. Li J, Pei M. Cell senescence: a challenge in cartilage engineering and regeneration. Tissue Eng Part B Rev. 2012;18(4):270–87.

    Article  CAS  PubMed  Google Scholar 

  28. Del Rey MJ, Valin A, Usategui A, Ergueta S, Martin E, Municio C, et al. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immun Ageing. 2019;16:29.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carlo MD Jr, Loeser RF. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum. 2003;48(12):3419–30.

    Article  PubMed  Google Scholar 

  30. Martin JA, Buckwalter JA. Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol A Biol Sci Med Sci. 2001;56(4):B172-179.

    Article  CAS  PubMed  Google Scholar 

  31. Montero-Melendez T, Nagano A, Chelala C, Filer A, Buckley CD, Perretti M. Therapeutic senescence via GPCR activation in synovial fibroblasts facilitates resolution of arthritis. Nat Commun. 2020;11(1):745.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Liu J, Ma X, Cui C, Deenik PR, Henderson PKP, et al. Real-time imaging of senescence in tumors with DNA damage. Sci Rep. 2019;9(1):2102.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Chen JA, Guo W, Wang Z, Sun N, Pan H, Tan J, et al. In vivo imaging of senescent vascular cells in atherosclerotic mice using a beta-galactosidase-activatable nanoprobe. Anal Chem. 2020;92(18):12613–21.

    Article  CAS  PubMed  Google Scholar 

  34. Biran A, Zada L, Abou Karam P, Vadai E, Roitman L, Ovadya Y, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brandl A, Meyer M, Bechmann V, Nerlich M, Angele P. Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res. 2011;317(11):1541–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ingrosso D, D’Angelo S, di Carlo E, Perna AF, Zappia V, Galletti P. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. Eur J Biochem. 2000;267(14):4397–405.

    Article  CAS  PubMed  Google Scholar 

  37. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  38. Suryadevara V, Hudgins AD, A. R, Pappalardo A, Karpova A, A.K. D, et al. SenGuiDe: SenNet guidelines for detecting senescent cells across tissues. . Nature Reviews Molecular Cell Biology. in press.

  39. Gao SG, Zeng C, Li LJ, Luo W, Zhang FJ, Tian J, et al. Correlation between senescence-associated beta-galactosidase expression in articular cartilage and disease severity of patients with knee osteoarthritis. Int J Rheum Dis. 2016;19(3):226–32.

    Article  CAS  PubMed  Google Scholar 

  40. Li W, Xiong Y, Chen W, Wu L. Wnt/beta-catenin signaling may induce senescence of chondrocytes in osteoarthritis. Exp Ther Med. 2020;20(3):2631–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fan Y, Cheng J, Zeng H, Shao L. Senescent cell depletion through targeting BCL-family proteins and mitochondria. Front Physiol. 2020;11:593630.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang B, Wang L, Gasek NS, Zhou Y, Kim T, Guo C, et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nat Aging. 2021;1(10):962–73.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Koo S, Won M, Li H, Kim WY, Li M, Yan C, et al. Harnessing alpha-l-fucosidase for in vivo cellular senescence imaging. Chem Sci. 2021;12(29):10054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang L, Liu G, Chen Q, Wan Y, Liu Z, Zhang J, et al. An activatable NIR probe for the detection and elimination of senescent cells. Anal Chem. 2022;94(13):5425–31.

    Article  CAS  PubMed  Google Scholar 

  45. Liu J, Ma X, Cui C, Chen Z, Wang Y, Deenik PR, et al. Noninvasive NIR imaging of senescence via in situ labeling. J Med Chem. 2021;64(24):17969–78.

    Article  CAS  PubMed  Google Scholar 

  46. Lozano-Torres B, Blandez JF, Galiana I, Lopez-Dominguez JA, Rovira M, Paez-Ribes M, et al. A two-photon probe based on naphthalimide-styrene fluorophore for the in vivo tracking of cellular senescence. Anal Chem. 2021;93(5):3052–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lilley LM, Kamper S, Caldwell M, Chia ZK, Ballweg D, Vistain L, et al. Self-immolative activation of beta-galactosidase-responsive probes for in vivo mr imaging in mouse models. Angew Chem Int Ed Engl. 2020;59(1):388–94.

    Article  CAS  PubMed  Google Scholar 

  48. Tang JH, Li H, Yuan C, Parigi G, Luchinat C, Meade TJ. Molecular engineering of self-immolative bioresponsive MR probes. J Am Chem Soc. 2023;145(18):10045–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suryadevara V, Hajipour MJ, Habte FG, Morakote W, Malik N, Chang E, et al. A multimodal based imaging approach using a novel radiotracer, (18F)-PyGal to detect senescence in small and large animal models. Osteoarthr Imaging. 2023;3:100107.

    Article  Google Scholar 

  50. He Z, Xu K, Li Y, Gao H, Miao T, Zhao R, et al. Molecularly targeted fluorescent sensors for visualizing and tracking cellular senescence. Biosensors (Basel). 2023; 13(9).

  51. Han J, Han MS, Tung CH. A fluorogenic probe for beta-galactosidase activity imaging in living cells. Mol Biosyst. 2013;9(12):3001–8.

    Article  CAS  PubMed  Google Scholar 

  52. Dai H, Chen R, Gui C, Tao T, Ge Y, Zhao X, et al. Eliminating senescent chondrogenic progenitor cells enhances chondrogenesis under intermittent hydrostatic pressure for the treatment of OA. Stem Cell Res Ther. 2020;11(1):199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bauer ME. Accelerated immunosenescence in rheumatoid arthritis: impact on clinical progression. Immun Ageing. 2020;17:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Collins JA, Diekman BO, Loeser RF. Targeting aging for disease modification in osteoarthritis. Curr Opin Rheumatol. 2018;30(1):101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taghian T, Batista AR, Kamper S, Caldwell M, Lilley L, Li H, et al. Real-time MR tracking of AAV gene therapy with betagal-responsive MR probe in a murine model of GM1-gangliosidosis. Mol Ther Methods Clin Dev. 2021;23:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brooks PM. Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr Opin Rheumatol. 2002;14(5):573–7.

    Article  PubMed  Google Scholar 

  57. Novais EJ, Tran VA, Johnston SN, Darris KR, Roupas AJ, Sessions GA, et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun. 2021;12(1):5213.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kanzaki N, Saito K, Maeda A, Kitagawa Y, Kiso Y, Watanabe K, et al. Effect of a dietary supplement containing glucosamine hydrochloride, chondroitin sulfate and quercetin glycosides on symptomatic knee osteoarthritis: a randomized, double-blind, placebo-controlled study. J Sci Food Agric. 2012;92(4):862–9.

    Article  CAS  PubMed  Google Scholar 

  59. Sierra-Ramirez A, Lopez-Aceituno JL, Costa-Machado LF, Plaza A, Barradas M, Fernandez-Marcos PJ. Transient metabolic improvement in obese mice treated with navitoclax or dasatinib/quercetin. Aging (Albany NY). 2020;12(12):11337–48.

    Article  CAS  PubMed  Google Scholar 

  60. Zheng W, Feng Z, You S, Zhang H, Tao Z, Wang Q, et al. Fisetin inhibits IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. Int Immunopharmacol. 2017;45:135–47.

    Article  CAS  PubMed  Google Scholar 

  61. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nakagawa Y, Mukai S, Yamada S, Matsuoka M, Tarumi E, Hashimoto T, et al. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: a randomized, double-blind, placebo-controlled prospective study. J Orthop Sci. 2014;19(6):933–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Okamoto H, Kamatani N. Successful treatment with fenofibrate, a peroxisome proliferator activated receptor alpha ligand, for a patient with rheumatoid arthritis. Ann Rheum Dis. 2004;63(8):1002–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chaganti RK, Tolstykh I, Javaid MK, Neogi T, Torner J, Curtis J, et al. High plasma levels of vitamin C and E are associated with incident radiographic knee osteoarthritis. Osteoarthritis Cartilage. 2014;22(2):190–6.

    Article  CAS  PubMed  Google Scholar 

  66. Wluka AE, Stuckey S, Brand C, Cicuttini FM. Supplementary vitamin E does not affect the loss of cartilage volume in knee osteoarthritis: a 2 year double blind randomized placebo controlled study. J Rheumatol. 2002;29(12):2585–91.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by a grant from the National Institutes of Health and the Common Fund’s Cellular Senescence Network (SenNet) Program, grant number UG3/UH3CA268112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike E. Daldrup-Link.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

- Senescent cells are key mediators of many musculoskeletal (MSK) diseases, such as osteoarthritis, rheumatoid arthritis and osteoporosis, among others.

- The development and clinical approval of new senolytic therapies create an urgent need for biomarkers that can detect senescent cells with clinical imaging tools.

- New beta-gal-sensitive MRI and PET imaging agents can detect senescent cells in arthritic joints and are currently being translated to the clinic.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 290 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daldrup-Link, H.E., Suryadevara, V., Tanyildizi, Y. et al. Musculoskeletal imaging of senescence. Skeletal Radiol (2024). https://doi.org/10.1007/s00256-024-04585-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00256-024-04585-8

Keywords

Navigation