Skip to main content

Advertisement

Log in

Clinical applications of skeletal muscle diffusion tensor imaging

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) may allow the determination of new threshold values, based on water anisotropy, to differentiate between healthy muscle and various pathological processes. Additionally, it may quantify treatment monitoring or training effects. Most current studies have evaluated the potential of DTI of skeletal muscle to assess sports-related injuries or therapy, and training monitoring. Another critical area of application of this technique is the characterization and monitoring of primary and secondary myopathies. In this manuscript, we review the application of DTI in the evaluation of skeletal muscle in these and other novel clinical scenarios, with emphasis on the use of quantitative imaging–derived biomarkers. Finally, the main limitations of the introduction of DTI in the clinical setting and potential areas of future use are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Costa AF, di Primio GA, Schweitzer ME. Magnetic resonance imaging of muscle disease: a pattern-based approach. Muscle Nerve. 2012;46:465–81.

    PubMed  Google Scholar 

  2. Guermazi A, Roemer FW, Robinson P, Tol JL, Regatte RR, Crema MD. Imaging of muscle injuries in sports medicine: sports imaging series. Radiology. 2017;282:646–63.

    PubMed  Google Scholar 

  3. de Belder FE, Oot AR, van Hecke W, Venstermans C, Menovsky T, van Marck V, et al. Diffusion tensor imaging provides an insight into the microstructure of meningiomas, high-grade gliomas, and peritumoral edema. J Comput Assist Tomogr. 2012;36:577–82.

  4. Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M. Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology. 2018;60:169–77.

  5. Martín Noguerol T, Barousse R, Socolovsky M, Luna A. Quantitative magnetic resonance (MR) neurography for evaluation of peripheral nerves and plexus injuries. Quant Imaging Med Surg. AME Publications; 2017;7:398–421.

  6. Stabinska J, Ljimani A, Frenken M, Feiweier T, Lanzman RS, Wittsack HJ. Comparison of PGSE and STEAM DTI acquisitions with varying diffusion times for probing anisotropic structures in human kidneys. Magn Reson Med. 2020;84:1518–25.

    PubMed  Google Scholar 

  7. Martín-Noguerol T, Barousse R, Luna A, Socolovsky M, Górriz JM, Gómez-Río M. New insights into the evaluation of peripheral nerves lesions: a survival guide for beginners. Neuroradiology. 2022;64:875–86.

    PubMed  Google Scholar 

  8. Biglands JD, Grainger AJ, Robinson P, Tanner SF, Tan AL, Feiweier T, et al. MRI in acute muscle tears in athletes: can quantitative T2 and DTI predict return to play better than visual assessment? Eur Radiol European Radiol. 2020;30:6603–13.

    CAS  Google Scholar 

  9. Hooijmans MT, Damon BM, Froeling M, Versluis MJ, Burakiewicz J, Verschuuren JJGM, et al. Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy. NMR Biomed. 2015;28:1589–97.

  10. Martín-Noguerol T, Barousse R, Wessell DE, Rossi I, Luna A. A handbook for beginners in skeletal muscle diffusion tensor imaging: physical basis and technical adjustments. Eur Radiol. 2022;32:7623–31.

    PubMed  Google Scholar 

  11. Mueller-Wohlfahrt H-W, Haensel L, Mithoefer K, Ekstrand J, English B, McNally S, et al. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med. 2013;47:342–50.

    PubMed  Google Scholar 

  12. Mendez-Villanueva A, Suarez-Arrones L, Rodas G, Fernandez-Gonzalo R, Tesch P, Linnehan R, et al. MRI-based regional muscle use during hamstring strengthening exercises in elite soccer players. PLoS ONE. 2016;11:e0161356.

    PubMed  PubMed Central  Google Scholar 

  13. Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ. Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve. 2012;46:42–50.

    PubMed  Google Scholar 

  14. Giraudo C, Motyka S, Weber M, Karner M, Resinger C, Feiweier T, et al. Normalized STEAM-based diffusion tensor imaging provides a robust assessment of muscle tears in football players: preliminary results of a new approach to evaluate muscle injuries. Eur Radiol. 2018;28:2882–9.

    PubMed  PubMed Central  Google Scholar 

  15. Froeling M, Oudeman J, Strijkers GJ, Maas M, Drost MR, Nicolay K, et al. Muscle changes detected with diffusion-tensor imaging after long-distance running. Radiology. 2015;274:548–62.

    PubMed  Google Scholar 

  16. Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging. 2006;24:402–8.

    PubMed  Google Scholar 

  17. Lyu X, Gao Y, Liu Q, Zhao H, Zhou H, Pan S. Exercise-induced muscle damage: multi-parametric MRI quantitative assessment. BMC Musculoskelet Disord. 2021;22:239

  18. Berry DB, Rodriguez-Soto AE, Englund EK, Shahidi B, Parra C, Frank LR, et al. Multiparametric MRI characterization of level dependent differences in lumbar muscle size, quality, and microstructure. JOR Spine. John Wiley and Sons Inc; 2020;3.

  19. van der Horst N, van de Hoef S, Reurink G, Huisstede B, Backx F. Return to play after hamstring injuries: a qualitative systematic review of definitions and criteria. Sports Med. 2016;46:899–912.

    PubMed  PubMed Central  Google Scholar 

  20. Moen MH, Reurink G, Weir A, Tol JL, Maas M, Goudswaard GJ. Predicting return to play after hamstring injuries. Br J Sports Med. 2014;48:1358–63.

    CAS  PubMed  Google Scholar 

  21. Creighton DW, Shrier I, Shultz R, Meeuwisse WH, Matheson GO. Return-to-play in sport: a decision-based model. Clin J Sport Med. 2010;20:379–85.

    PubMed  Google Scholar 

  22. Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: a review. J Magn Reson Imaging. 2016;43:773–88.

    PubMed  Google Scholar 

  23. Heemskerk AM, Strijkers GJ, Drost MR, van Bochove GS, Nicolay K. Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging. Radiology. 2007;243:413–21.

    PubMed  Google Scholar 

  24. Wu C-H, Chen Y-J, Wang M-H, Chiou L-L, Tseng W-YI, Lee H-S. Diffusion tensor tractography reveals muscle reconnection during axolotl limb regeneration. PLoS One. 2017;12:e0173425.

  25. Bruschetta D, Anastasi G, Andronaco V, Cascio F, Rizzo G, di Mauro D, et al. Human calf muscles changes after strength training as revealed by diffusion tensor imaging. J Sports Med Phys Fitness. 2019;59:853–60.

  26. Blazevich AJ. Effects of physical training and detraining, immobilisation, growth and aging on human fascicle geometry. Sports Med. 2006;36:1003–17.

    PubMed  Google Scholar 

  27. Kellermann M, Heiss R, Swoboda B, Gelse K, Freiwald J, Grim C, et al. Intramuscular perfusion response in delayed onset muscle soreness (DOMS): a quantitative analysis with contrast-enhanced ultrasound (CEUS). Int J Sports Med. 2017;38:833–41.

    PubMed  Google Scholar 

  28. de Luca A, Bertoldo A, Froeling M. Effects of perfusion on DTI and DKI estimates in the skeletal muscle. Magn Reson Med. 2017;78:233–46.

    PubMed  Google Scholar 

  29. Monte JR, Hooijmans MT, Froeling M, Oudeman J, Tol JL, Maas M, et al. The repeatability of bilateral diffusion tensor imaging (DTI) in the upper leg muscles of healthy adults. Eur Radiol. 2020;30:1709–18.

    PubMed  Google Scholar 

  30. Englund EK, Reiter DA, Shahidi B, Sigmund EE. Intravoxel incoherent motion magnetic resonance imaging in skeletal muscle: review and future directions. J Magn Reson Imaging. 2022;55:988–1012.

    PubMed  Google Scholar 

  31. Scheel M, von Roth P, Winkler T, Arampatzis A, Prokscha T, Hamm B, et al. Fiber type characterization in skeletal muscle by diffusion tensor imaging. NMR Biomed. 2013;26:1220–4.

    PubMed  Google Scholar 

  32. Okamoto Y, Kemp GJ, Isobe T, Sato E, Hirano Y, Shoda J, et al. Changes in diffusion tensor imaging (DTI) eigenvalues of skeletal muscle due to hybrid exercise training. Magn Reson Imaging. 2014;32:1297–300.

    PubMed  Google Scholar 

  33. Baete SH, Cho GY, Sigmund EE. Dynamic diffusion-tensor measurements in muscle tissue using the single-line multiple-echo diffusion-tensor acquisition technique at 3T. NMR Biomed. 2015;28:667–78.

    PubMed  PubMed Central  Google Scholar 

  34. Sigmund EE, Baete SH, Patel K, Wang D, Stoffel D, Otazo R, et al. Spatially resolved kinetics of skeletal muscle exercise response and recovery with multiple echo diffusion tensor imaging (MEDITI): a feasibility study. Magn Reson Mater Phys, Biol Med. 2018;31:599–608.

    CAS  Google Scholar 

  35. Gao Y, Lu Z, Lyu X, Liu Q, Pan S. A longitudinal study of T2 mapping combined with diffusion tensor imaging to quantitatively evaluate tissue repair of rat skeletal muscle after frostbite. Front Physiol. 2021;11:597638.

  36. Martín-Noguerol T, Rossi I, Tol JL, Bencardino J, Guermazi A, Luna A. Past, present, and future in sports imaging: how to drive in a three-lane freeway. Eur Radiol. 2022;33:1589–92.

    PubMed  Google Scholar 

  37. North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24:97–116.

    PubMed  Google Scholar 

  38. Hooijmans MT, Damon BM, Froeling M, Versluis MJ, Burakiewicz J, Verschuuren JJGM, et al. Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy. NMR Biomed. 2015;28:1589–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Finanger EL, Russman B, Forbes SC, Rooney WD, Walter GA, Vandenborne K. Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am. 2012;23:1–10.

    PubMed  Google Scholar 

  40. Ponrartana S, Ramos-Platt L, Wren TAL, Hu HH, Perkins TG, Chia JM, et al. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study. Pediatr Radiol. 2015;45:582–9.

    PubMed  Google Scholar 

  41. Forsting J, Rohm M, Froeling M, Güttsches AK, Vorgerd M, Schlaffke L, et al. High inter-rater reliability of manual segmentation and volume-based tractography in healthy and dystrophic human calf muscle. Diagnostics. 2021;11:1521.

  42. Berry DB, Regner B, Galinsky V, Ward SR, Frank LR. Relationships between tissue microstructure and the diffusion tensor in simulated skeletal muscle. Magn Reson Med. 2018;80:317–29.

    PubMed  Google Scholar 

  43. Correa-de-Araujo R, Harris-Love MO, Miljkovic I, Fragala MS, Anthony BW, Manini TM. The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: a symposium report. Front Physiol. 2017;8:87.

  44. Handsfield GG, Bolsterlee B, Inouye JM, Herbert RD, Besier TF, Fernandez JW. Determining skeletal muscle architecture with Laplacian simulations: a comparison with diffusion tensor imaging. Biomech Model Mechanobiol. 2017;16:1845–55.

    PubMed  Google Scholar 

  45. Rooney WD, Berlow YA, Triplett WT, Forbes SC, Willcocks RJ, Wang D-J, et al. Modeling disease trajectory in Duchenne muscular dystrophy. Neurology. 2020;94:e1622–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Williams SE, Heemskerk AM, Welch EB, Li K, Damon BM, Park JH. Quantitative effects of inclusion of fat on muscle diffusion tensor MRI measurements. J Magn Reson Imaging. 2013;38:1292–7.

    PubMed  Google Scholar 

  47. Keller S, Wang ZJ, Aigner A, Kim AC, Golsari A, Kooijman H, et al. Diffusion tensor imaging of dystrophic skeletal muscle. Clin Neuroradiol. 2019;29:231–42.

    CAS  PubMed  Google Scholar 

  48. Winters KV, Reynaud O, Novikov DS, Fieremans E, Kim SG. Quantifying myofiber integrity using diffusion MRI and random permeable barrier modeling in skeletal muscle growth and Duchenne muscular dystrophy model in mice. Magn Reson Med. 2018;80:2094–108.

    PubMed  PubMed Central  Google Scholar 

  49. McMillan AB, Shi D, Pratt SJP, Lovering RM. Diffusion tensor MRI to assess damage in healthy and dystrophic skeletal muscle after lengthening contractions. J Biomed Biotechnol. 2011;2011:1–10.

    Google Scholar 

  50. Otto LAM, van der Pol WL, Schlaffke L, Wijngaarde CA, Stam M, Wadman RI, et al. Quantitative MRI of skeletal muscle in a cross-sectional cohort of patients with spinal muscular atrophy types 2 and 3. NMR Biomed. John Wiley and Sons Ltd; 2020;33.

  51. Lemberskiy G, Feiweier T, Gyftopoulos S, Axel L, Novikov DS, Fieremans E. Assessment of myofiber microstructure changes due to atrophy and recovery with time-dependent diffusion MRI. NMR Biomed. John Wiley and Sons Ltd; 2021;34.

  52. Berry DB, Englund EK, Galinsky V, Frank LR, Ward SR. Varying diffusion time to discriminate between simulated skeletal muscle injury models using stimulated echo diffusion tensor imaging. Magn Reson Med. John Wiley and Sons Inc; 2021;85:2524–36.

  53. Sigmund EE, Baete SH, Luo T, Patel K, Wang D, Rossi I, et al. MRI assessment of the thigh musculature in dermatomyositis and healthy subjects using diffusion tensor imaging, intravoxel incoherent motion and dynamic DTI. Eur Radiol. 2018;28:5304–15.

    CAS  PubMed  Google Scholar 

  54. Wang F, Wu C, Sun C, Liu D, Sun Y, Wang Q, et al. Simultaneous multislice accelerated diffusion tensor imaging of thigh muscles in myositis. Am J Roentgenol. 2018;211:861–6.

    CAS  Google Scholar 

  55. Ai T, Yu K, Gao L, Zhang P, Goerner F, Runge VM, et al. Diffusion tensor imaging in evaluation of thigh muscles in patients with polymyositis and dermatomyositis. Br J Radiol. 2014;87:20140261.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rehmann R, Schlaffke L, Froeling M, Kley RA, Kühnle E, de Marées M, et al. Muscle diffusion tensor imaging in glycogen storage disease V (McArdle disease). Eur Radiol. 2019;29:3224–32.

    CAS  PubMed  Google Scholar 

  57. Ran J, Dai B, Liu C, Zhang H, Li Y, Hou B, et al. The diagnostic value of T2 map, diffusion tensor imaging, and diffusion kurtosis imaging in differentiating dermatomyositis from muscular dystrophy. Acta radiol. SAGE Publications Inc.; 2022;63:467–73.

  58. Wasserman PL, Way A, Baig S, Gopireddy DR. MRI of myositis and other urgent muscle-related disorders. Emerg Radiol. 2021; 28:409–21.

  59. May DA, Disler DG, Jones EA, Balkissoon AA, Manaster BJ. Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, and pitfalls. Radiographics. 2000;20:S295-315.

    PubMed  Google Scholar 

  60. Holl N, Echaniz-Laguna A, Bierry G, Mohr M, Loeffler J-P, Moser T, et al. Diffusion-weighted MRI of denervated muscle: a clinical and experimental study. Skeletal Radiol. 2008;37:1111–7.

    PubMed  Google Scholar 

  61. Zhang J, Zhang G, Morrison B, Mori S, Sheikh KA. Magnetic resonance imaging of mouse skeletal muscle to measure denervation atrophy. Exp Neurol. 2008;212:448–57.

    PubMed  PubMed Central  Google Scholar 

  62. Sahrmann AS, Stott NS, Besier TF, Fernandez JW, Handsfield GG. Soleus muscle weakness in cerebral palsy: muscle architecture revealed with diffusion tensor imaging. PLoS ONE. 2019;14:e0205944.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Körting C, Schlippe M, Petersson S, Pennati GV, Tarassova O, Arndt A, et al. In vivo muscle morphology comparison in post-stroke survivors using ultrasonography and diffusion tensor imaging. Sci Rep. 2019;9:11836.

    PubMed  PubMed Central  Google Scholar 

  64. Chianca V, Albano D, Messina C, Gitto S, Ruffo G, Guarino S, et al. Sarcopenia: imaging assessment and clinical application. Abdominal Radiology. Springer; 2022;47:3205–16.

  65. Giraudo C, Cavaliere A, Lupi A, Guglielmi G, Quaia E. Established paths and new avenues: a review of the main radiological techniques for investigating sarcopenia. Quant Imaging Med Surg. AME Publishing Company. 2020. pp 1602–13.

  66. Kälin PS, Huber FA, Hamie QM, Issler LS, Farshad-Amacker NA, Ulbrich EJ, et al. Quantitative MRI of visually intact rotator cuff muscles by multiecho Dixon-based fat quantification and diffusion tensor imaging. J Magn Reson Imaging. 2019;49:109–17.

    PubMed  Google Scholar 

  67. Kessler LG, Barnhart HX, Buckler AJ, Choudhury KR, Kondratovich MV, Toledano A, et al. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res. 2015;24:9–26.

    PubMed  Google Scholar 

  68. Edalati M, Hastings MK, Sorensen CJ, Zayed M, Mueller MJ, Hildebolt CF, et al. Diffusion tensor imaging of the calf muscles in subjects with and without diabetes mellitus. Journal of Magnetic Resonance Imaging. John Wiley and Sons Inc.; 2019;49:1285–95.

Download references

Acknowledgements

Jose G Raya PhD (Department of Radiology, NYU School of Medicine, NY, USA) for his support and valuable guidance and Dr. Reyes Sanles-Falagan for additional assistance with manuscript formatting and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Martín-Noguerol.

Ethics declarations

Competing interests

Antonio Luna, MD, PhD is occasional lecturer of Philips, Siemens Healthineers, Bracco and Canon and receives royalties as book editor from Springer-Verlag.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Most current studies have evaluated the potential of DTI of skeletal muscle to assess sports-related injuries or therapy and training monitoring.

• Primary and secondary myopathies may also benefit from the use of skeletal muscle DTI studies.

• Nowadays, DTI should be considered a complementary tool for skeletal muscle assessment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Noguerol, T., Barousse, R., Wessell, D.E. et al. Clinical applications of skeletal muscle diffusion tensor imaging. Skeletal Radiol 52, 1639–1649 (2023). https://doi.org/10.1007/s00256-023-04350-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04350-3

Keywords

Navigation