Skip to main content

Advanced Magnetic Resonance Imaging of Muscles in Sports Medicine

  • Chapter
  • First Online:
Muscle Injuries in Sport Athletes

Part of the book series: Sports and Traumatology ((SPORTS))

  • 2154 Accesses

Abstract

MRI is the method of choice to confirm and evaluate the extent and severity of muscle injuries in acute and chronic situations. However, sports medicine physicians frequently face in their clinical practice cases of persistent clinical symptoms and/or persistent loss of function after muscle injury, with routine imaging including MRI that is unremarkable. Moreover, function and composition of muscle tissue cannot be assessed with routine MRI. Advanced MRI techniques for muscle assessment are available and may provide information on composition, microstructure, and function of muscles or groups of muscles. To date, these techniques have been applied mainly in clinical research regarding other muscle affections such as muscular dystrophy and other myopathies. Some of these techniques are widely available in clinical scanners (T2 mapping, proton MR spectroscopy, fat-water separation techniques), whereas others require special software and hardware and are not widely available in clinical practice (diffusion-tensor imaging (DTI), phosphorus MR spectroscopy, MR elastography). In this chapter, we will discuss these advanced MRI techniques for muscle assessment and their potential applications in sports medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayashi D, Hamilton B, Guermazi A, de Villiers R, Crema MD, Roemer FW. Traumatic injuries of thigh and calf muscles in athletes: role and clinical relevance of MR imaging and ultrasound. Insights Imaging. 2012;3:591–601.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Koulouris G, Connell D. Hamstring muscle complex: an imaging review. Radiographics. 2005;25:571–86.

    Article  PubMed  Google Scholar 

  3. Connell DA, Schneider-Kolsky ME, Hoving JL, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol. 2004;183:975–84.

    Article  PubMed  Google Scholar 

  4. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007;35:1716–24.

    Article  PubMed  Google Scholar 

  5. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 2007;35:197–206.

    Article  PubMed  Google Scholar 

  6. Askling CM, Tengvar M, Saartok T, Thorstensson A. Proximal hamstring strains of stretching type in different sports: injury situations, clinical and magnetic resonance imaging characteristics, and return to sport. Am J Sports Med. 2008;36:1799–804.

    Article  PubMed  Google Scholar 

  7. Ekstrand J, Healy JC, Walden M, Lee JC, English B, Hagglund M. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med. 2012;46:112–7.

    Article  PubMed  Google Scholar 

  8. Cohen SB, Towers JD, Zoga A, et al. Hamstring injuries in professional football players: magnetic resonance imaging correlation with return to play. Sports Health. 2011;3:423–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kerkhoffs GM, van Es N, Wieldraaijer T, Sierevelt IN, Ekstrand J, van Dijk CN. Diagnosis and prognosis of acute hamstring injuries in athletes. Knee Surg Sports Traumatol Arthrosc. 2013;21:500–9.

    Article  PubMed  Google Scholar 

  10. Koulouris G, Connell DA, Brukner P, Schneider-Kolsky M. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am J Sports Med. 2007;35:1500–6.

    Article  PubMed  Google Scholar 

  11. Verrall GM, Slavotinek JP, Barnes PG, Fon GT, Esterman A. Assessment of physical examination and magnetic resonance imaging findings of hamstring injury as predictors for recurrent injury. J Orthop Sports Phys Ther. 2006;36:215–24.

    Article  PubMed  Google Scholar 

  12. Gibbs NJ, Cross TM, Cameron M, Houang MT. The accuracy of MRI in predicting recovery and recurrence of acute grade one hamstring muscle strains within the same season in Australian Rules football players. J Sci Med Sport. 2004;7:248–58.

    Article  CAS  PubMed  Google Scholar 

  13. Schneider-Kolsky ME, Hoving JL, Warren P, Connell DA. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med. 2006;34:1008–15.

    Article  PubMed  Google Scholar 

  14. Slavotinek JP, Verrall GM, Fon GT. Hamstring injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. AJR Am J Roentgenol. 2002;179:1621–8.

    Article  PubMed  Google Scholar 

  15. Comin J, Malliaras P, Baquie P, Barbour T, Connell D. Return to competitive play after hamstring injuries involving disruption of the central tendon. Am J Sports Med. 2013;41:111–5.

    Article  PubMed  Google Scholar 

  16. Cross TM, Gibbs N, Houang MT, Cameron M. Acute quadriceps muscle strains: magnetic resonance imaging features and prognosis. Am J Sports Med. 2004;32:710–9.

    Article  PubMed  Google Scholar 

  17. Kim HK, Lindquist DM, Serai SD, et al. Magnetic resonance imaging of pediatric muscular disorders: recent advances and clinical applications. Radiol Clin North Am. 2013;51:721–42.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Forbes SC, Walter GA, Rooney WD, et al. Skeletal muscles of ambulant children with Duchenne muscular dystrophy: validation of multicenter study of evaluation with MR imaging and MR spectroscopy. Radiology. 2013;269:198–207.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maillard SM, Jones R, Owens C, et al. Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology. 2004;43:603–8.

    Article  CAS  PubMed  Google Scholar 

  20. Arpan I, Forbes SC, Lott DJ, et al. T(2) mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy. NMR Biomed. 2013;26:320–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hsieh TJ, Jaw TS, Chuang HY, Jong YJ, Liu GC, Li CW. Muscle metabolism in Duchenne muscular dystrophy assessed by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr. 2009;33:150–4.

    Article  PubMed  Google Scholar 

  22. Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ. T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology. 2010;255:899–908.

    Article  PubMed  Google Scholar 

  23. Kim HK, Laor T, Horn PS, Wong B. Quantitative assessment of the T2 relaxation time of the gluteus muscles in children with Duchenne muscular dystrophy: a comparative study before and after steroid treatment. Korean J Radiol. 2010;11:304–11.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lodi R, Muntoni F, Taylor J, et al. Correlative MR imaging and 31P-MR spectroscopy study in sarcoglycan deficient limb girdle muscular dystrophy. Neuromuscular Disorders NMD. 1997;7:505–11.

    Article  CAS  PubMed  Google Scholar 

  25. Torriani M, Townsend E, Thomas BJ, Bredella MA, Ghomi RH, Tseng BS. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study. Skeletal Radiol. 2012;41:437–45.

    Article  PubMed  Google Scholar 

  26. Crema MD, Roemer FW, Marra MD, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31:37–61.

    Article  PubMed  Google Scholar 

  27. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232:592–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Koff MF, Amrami KK, Kaufman KR. Clinical evaluation of T2 values of patellar cartilage in patients with osteoarthritis. OsteoarthritisCartilage. 2007;15:198–204.

    CAS  Google Scholar 

  29. Stehling C, Liebl H, Krug R, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 2010;254:509–20.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology. 2013;267:503–13.

    Article  PubMed  Google Scholar 

  31. Gambarota G, Cairns BE, Berde CB, Mulkern RV. Osmotic effects on the T2 relaxation decay of in vivo muscle. Magn Reson Med. 2001;46:592–9.

    Article  CAS  PubMed  Google Scholar 

  32. Prior BM, Foley JM, Jayaraman RC, Meyer RA. Pixel T2 distribution in functional magnetic resonance images of muscle. J Appl Physiol. 1999;87:2107–14.

    CAS  PubMed  Google Scholar 

  33. Shellock FG, Fleckenstein JL. Muscle physiology and pathophysiology: magnetic resonance imaging evaluation. Semin Musculoskelet Radiol. 2000;4:459–79.

    Article  CAS  PubMed  Google Scholar 

  34. Kinugasa R, Kawakami Y, Fukunaga T. Mapping activation levels of skeletal muscle in healthy volunteers: an MRI study. J Magn Reson Imaging. 2006;24:1420–5.

    Article  PubMed  Google Scholar 

  35. Tawara N, Nitta O, Kuruma H, et al. Functional T(2) mapping of the trunkal muscle. Magn Reson Med Sci. 2009;8:81–3.

    Article  PubMed  Google Scholar 

  36. Tawara N, Nitta O, Kuruma H, Niitsu M, Itoh A. T2 mapping of muscle activity using ultrafast imaging. Magn Reson Med Sci. 2011;10:85–91.

    Article  PubMed  Google Scholar 

  37. Akima H, Kinugasa R, Kuno S. Recruitment of the thigh muscles during sprint cycling by muscle functional magnetic resonance imaging. Int J Sports Med. 2005;26:245–52.

    Article  CAS  PubMed  Google Scholar 

  38. Baffa AP, Felicio LR, Saad MC, Nogueira-Barbosa MH, Santos AC, Bevilaqua-Grossi D. Quantitative MRI of vastus medialis, vastus lateralis and gluteus medius muscle workload after squat exercise: comparison between squatting with hip adduction and hip abduction. J Hum Kinet. 2012;33:5–14.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ. Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Invest Radiol. 1990;25:480–5.

    Article  CAS  PubMed  Google Scholar 

  40. Yue G, Alexander AL, Laidlaw DH, Gmitro AF, Unger EC, Enoka RM. Sensitivity of muscle proton spin-spin relaxation time as an index of muscle activation. J Appl Physiol. 1994;77:84–92.

    CAS  PubMed  Google Scholar 

  41. Fleckenstein JL, Canby RC, Parkey RW, Peshock RM. Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. AJR Am J Roentgenol. 1988;151:231–7.

    Article  CAS  PubMed  Google Scholar 

  42. Prior BM, Ploutz-Snyder LL, Cooper TG, Meyer RA. Fiber type and metabolic dependence of T2 increases in stimulated rat muscles. J Appl Physiol. 2001;90:615–23.

    CAS  PubMed  Google Scholar 

  43. Jenner G, Foley JM, Cooper TG, Potchen EJ, Meyer RA. Changes in magnetic resonance images of muscle depend on exercise intensity and duration, not work. J Appl Physiol. 1994;76:2119–24.

    CAS  PubMed  Google Scholar 

  44. Meyer RA, Prior BM. Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev. 2000;28:89–92.

    CAS  PubMed  Google Scholar 

  45. Conley MS, Meyer RA, Bloomberg JJ, Feeback DL, Dudley GA. Noninvasive analysis of human neck muscle function. Spine. 1995;20:2505–12.

    Article  CAS  PubMed  Google Scholar 

  46. Adams GR, Duvoisin MR, Dudley GA. Magnetic resonance imaging and electromyography as indexes of muscle function. J Appl Physiol. 1992;73:1578–83.

    CAS  PubMed  Google Scholar 

  47. Cheng HA, Robergs RA, Letellier JP, Caprihan A, Icenogle MV, Haseler LJ. Changes in muscle proton transverse relaxation times and acidosis during exercise and recovery. J Appl Physiol. 1995;79:1370–8.

    CAS  PubMed  Google Scholar 

  48. Fleckenstein JL, Watumull D, McIntire DD, Bertocci LA, Chason DP, Peshock RM. Muscle proton T2 relaxation times and work during repetitive maximal voluntary exercise. J Appl Physiol. 1993;74:2855–9.

    CAS  PubMed  Google Scholar 

  49. Stieltjes B, Kaufmann WE, van Zijl PC, et al. Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage. 2001;14:723–35.

    Article  CAS  PubMed  Google Scholar 

  50. Sternberg EJ, Lipton ML, Burns J. Utility of diffusion tensor imaging in evaluation of the peritumoral region in patients with primary and metastatic brain tumors. AJNR Am J Neuroradiol. 2014;35:439–44.

    Article  CAS  PubMed  Google Scholar 

  51. Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging. 2006;24:402–8.

    Article  PubMed  Google Scholar 

  52. Froeling M, Nederveen AJ, Heijtel DF, et al. Diffusion-tensor MRI reveals the complex muscle architecture of the human forearm. J Magn Reson Imaging. 2012;36:237–48.

    Article  PubMed  Google Scholar 

  53. Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ. Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve. 2012;46:42–50.

    Article  PubMed  Google Scholar 

  54. Kan JH, Heemskerk AM, Ding Z, et al. DTI-based muscle fiber tracking of the quadriceps mechanism in lateral patellar dislocation. J Magn Reson Imaging. 2009;29:663–70.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Scheel M, Prokscha T, von Roth P, et al. Diffusion tensor imaging of skeletal muscle - correlation of fractional anisotropy to muscle power. RoFo. 2013;185:857–61.

    Article  CAS  PubMed  Google Scholar 

  56. Scheel M, von Roth P, Winkler T, et al. Fiber type characterization in skeletal muscle by diffusion tensor imaging. NMR Biomed. 2013;26:1220–4.

    Article  PubMed  Google Scholar 

  57. Sigmund EE, Sui D, Ukpebor O, et al. Stimulated echo diffusion tensor imaging and SPAIR T2 -weighted imaging in chronic exertional compartment syndrome of the lower leg muscles. J Magn Reson Imaging. 2013;38:1073–82.

    Article  PubMed  Google Scholar 

  58. Sinha S, Sinha U, Edgerton VR. In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging. 2006;24:182–90.

    Article  PubMed  Google Scholar 

  59. Pechlivanis A, Kostidis S, Saraslanidis P, et al. 1H NMR study on the short- and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum. J Proteome Res. 2013;12:470–80.

    Article  CAS  PubMed  Google Scholar 

  60. Ren J, Dean Sherry A, Malloy CR. Noninvasive monitoring of lactate dynamics in human forearm muscle after exhaustive exercise by (1) H-magnetic resonance spectroscopy at 7 tesla. Magn Reson Med. 2012;28.

    Google Scholar 

  61. Vermathen P, Saillen P, Boss A, Zehnder M, Boesch C. Skeletal muscle (1)H MRSI before and after prolonged exercise. I. muscle specific depletion of intramyocellular lipids. Magn Reson Med. 2012;68:1357–67.

    Article  CAS  PubMed  Google Scholar 

  62. Boss A, Kreis R, Saillen P, Zehnder M, Boesch C, Vermathen P. Skeletal muscle (1)H MRSI before and after prolonged exercise. II. visibility of free carnitine. Magn Reson Med. 2012;68:1368–75.

    Article  CAS  PubMed  Google Scholar 

  63. Taylor DJ. Clinical utility of muscle MR spectroscopy. Semin Musculoskelet Radiol. 2000;4:481–502.

    Article  CAS  PubMed  Google Scholar 

  64. Johansen L, Quistorff B. 31P-MRS characterization of sprint and endurance trained athletes. Int J Sports Med. 2003;24:183–9.

    Article  CAS  PubMed  Google Scholar 

  65. Pesta D, Paschke V, Hoppel F, et al. Different metabolic responses during incremental exercise assessed by localized 31P MRS in sprint and endurance athletes and untrained individuals. Int J Sports Med. 2013;34:669–75.

    Article  CAS  PubMed  Google Scholar 

  66. Forbes SC, Slade JM, Meyer RA. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Appl Physiol Nutr Metab. 2008;33:1124–31.

    Article  CAS  PubMed  Google Scholar 

  67. Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294:R585–93.

    Article  CAS  PubMed  Google Scholar 

  68. Wokke BH, Bos C, Reijnierse M, et al. Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J Magn Reson Imaging. 2013;38:619–24.

    Article  PubMed  Google Scholar 

  69. Fischmann A, Kaspar S, Reinhardt J, Gloor M, Stippich C, Fischer D. Exercise might bias skeletal-muscle fat fraction calculation from Dixon images. Neuromuscular Disorders NMD. 2012;22(Suppl 2):S107–10.

    Article  PubMed  Google Scholar 

  70. Hiba B, Richard N, Hebert LJ, et al. Quantitative assessment of skeletal muscle degeneration in patients with myotonic dystrophy type 1 using MRI. J Magn Reson Imaging. 2012;35:678–85.

    Article  PubMed  Google Scholar 

  71. Wren TA, Bluml S, Tseng-Ong L, Gilsanz V. Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. AJR Am J Roentgenol. 2008;190:W8–12.

    Article  PubMed  Google Scholar 

  72. Ahmad M, Liu Y, Slavens ZW, et al. A method for automatic identification of water and fat images from a symmetrically sampled dual-echo Dixon technique. Magn Reson Imaging. 2010;28:427–33.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gerdes CM, Kijowski R, Reeder SB. IDEAL imaging of the musculoskeletal system: robust water fat separation for uniform fat suppression, marrow evaluation, and cartilage imaging. AJR Am J Roentgenol. 2007;189:W284–91.

    Article  PubMed  Google Scholar 

  74. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269:1854–7.

    Article  CAS  PubMed  Google Scholar 

  75. Basford JR, Jenkyn TR, An KN, Ehman RL, Heers G, Kaufman KR. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch Phys Med Rehabil. 2002;83:1530–6.

    Article  PubMed  Google Scholar 

  76. Chen Q, Basford J, An KN. Ability of magnetic resonance elastography to assess taut bands. Clin Biochem. 2008;23:623–9.

    Google Scholar 

  77. Muraki T, Domire ZJ, McCullough MB, Chen Q, An KN. Measurement of stiffness changes in immobilized muscle using magnetic resonance elastography. Clin Biochem. 2010;25:499–503.

    Google Scholar 

  78. Green MA, Sinkus R, Gandevia SC, Herbert RD, Bilston LE. Measuring changes in muscle stiffness after eccentric exercise using elastography. NMR Biomed. 2012;25:852–8.

    Article  CAS  PubMed  Google Scholar 

  79. Debernard L, Robert L, Charleux F, Bensamoun SF. A possible clinical tool to depict muscle elasticity mapping using magnetic resonance elastography. Muscle Nerve. 2013;47:903–8.

    Article  PubMed  Google Scholar 

  80. Barnhill E, Kennedy P, Hammer S, van Beek EJ, Brown C, Roberts N. Statistical mapping of the effect of knee extension on thigh muscle viscoelastic properties using magnetic resonance elastography. Physiol Meas. 2013;34:1675–98.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Daoud Crema MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Crema, M.D. (2017). Advanced Magnetic Resonance Imaging of Muscles in Sports Medicine. In: Roger, B., Guermazi, A., Skaf, A. (eds) Muscle Injuries in Sport Athletes. Sports and Traumatology. Springer, Cham. https://doi.org/10.1007/978-3-319-43344-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43344-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43342-4

  • Online ISBN: 978-3-319-43344-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics