Skip to main content

Advertisement

Log in

Increased 18F-FAPI uptake in bones and joints of lung cancer patients: characteristics and distributions

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract  

Objective

This study investigated the distribution and characteristics of various bone and joint lesions on 18F-FAPI PET/CT in lung cancer patients.

Methods

Seventy-four lung cancer patients who underwent 18F-FAPI PET/CT were reviewed. Bone and joint lesions with elevated 18F-FAPI uptake were recorded and analyzed. The distribution and maximum uptake value (SUVmax) of different benign lesions or bone metastases were presented. In addition, the SUVmax of bone metastases on 18F-FDG and 18F-FAPI-04 PET/CT were also compared.

Results

In 53 patients, a total of 262 lesions presented 18F-FAPI accumulation. Bone metastases were mainly in vertebrae, pelvis, and ribs, while benign lesions were in vertebral margins, alveolar bone, and shoulder joints. The SUVmax of bone metastases was significantly higher than that of benign lesions (\(6.6\pm 2.8\) vs. \(4.3\pm 1.6\), \(P<0.001\)), with NSCLC cases having higher SUVmax values than SCLC cases (\(7.3\pm 2.7\) vs. \(3.7\pm 1.1\), \(P<0.001\)). Among benign lesions, arthritis and periodontitis demonstrated higher SUVmax than degenerative lesions (arthritis: \(5.2\pm 2.3\); periodontitis: \(4.8\pm 1.5\); degenerative diseases: \(3.6\pm 0.9\); \(P<0.01\) and \(P<0.05\), respectively). The SUVmax of bone metastases was comparable between 18F-FDG and 18F-FAPI PET/CT. However, 18F-FAPI PET/CT was found to be superior in identifying cranial metastases compared to 18F-FDG PET/CT (TBRmet/brain: \(54.2\pm 13.5\) vs. \(0.6\pm 0.2\), \(P=0.02\)).

Conclusion

This study demonstrated that 18F-FAPI PET/CT is a valuable imaging modality for detecting bone and joint lesions in lung cancer patients. The SUVmax of malignant lesions was higher than that of benign lesions, but cannot accurately distinguish benign and malignant lesions. The uptake of FAPI differs among lesions with different pathological types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References 

  1. Popper HH. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 2016;35(1):75–91. https://doi.org/10.1007/s10555-016-9618-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bai SB, Liu DZ, Cheng Y, Cui H, Liu M, Cui MX, Zhang BL, Mei QB, Zhou SY. Osteoclasts and tumor cells dual targeting nanoparticle to treat bone metastases of lung cancer. Nanomedicine-Uk. 2019;21:102054. https://doi.org/10.1016/j.nano.2019.102054.

    Article  CAS  Google Scholar 

  3. Hernandez RK, Wade SW, Reich A, Pirolli M, Liede A, Lyman GH. Incidence of bone metastases in patients with solid tumors: analysis of oncology electronic medical records in the United States. BMC Cancer. 2018;18(1):44. https://doi.org/10.1186/s12885-017-3922-0.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang L, Gong Z. Clinical characteristics and prognostic factors in bone metastases from lung cancer. Med Sci Monit. 2017;23:4087–94. https://doi.org/10.12659/msm.902971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cook G, Goh V. Molecular imaging of bone metastases and their response to therapy. J Nucl Med. 2020;61(6):799–806. https://doi.org/10.2967/jnumed.119.234260.

    Article  CAS  PubMed  Google Scholar 

  6. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31(1):28–49. https://doi.org/10.1053/snuc.2001.18742.

    Article  CAS  PubMed  Google Scholar 

  7. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L, Chirgwin JM. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res. 2006;12(20 Pt 2):6213s–6s. https://doi.org/10.1158/1078-0432.CCR-06-1007.

    Article  CAS  PubMed  Google Scholar 

  8. Cook GJ, Goh V. Functional and hybrid imaging of bone metastases. J Bone Miner Res. 2018;33(6):961–72. https://doi.org/10.1002/jbmr.3444.

    Article  PubMed  Google Scholar 

  9. Cook GJ, Azad G, Padhani AR. Bone imaging in prostate cancer: the evolving roles of nuclear medicine and radiology. Clin Transl Imaging. 2016;4(6):439–47. https://doi.org/10.1007/s40336-016-0196-5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020;39(3):783–803. https://doi.org/10.1007/s10555-020-09909-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dendl K, Koerber SA, Kratochwil C, Cardinale J, Finck R, Dabir M, Novruzov E, Watabe T, Kramer V, Choyke PL, Haberkorn U, Giesel FL. FAP and FAPI-PET/CT in malignant and non-malignant diseases: a perfect symbiosis? Cancers (Basel) 2021;13(19):4946. https://doi.org/10.3390/cancers13194946

  12. Stein S, Weber J, Nusser-Stein S, Pahla J, Zhang HE, Mohammed SA, Oppi S, Gaul DS, Paneni F, Tailleux A, Staels B, von Meyenn F, Ruschitzka F, Gorrell MD, Lüscher TF, Matter CM. Deletion of fibroblast activation protein provides atheroprotection. Cardiovasc Res. 2021;117(4):1060–9. https://doi.org/10.1093/cvr/cvaa142.

    Article  CAS  PubMed  Google Scholar 

  13. Windisch P, Zwahlen DR, Giesel FL, Scholz E, Lugenbiel P, Debus J, Haberkorn U, Adeberg S. Clinical results of fibroblast activation protein (FAP) specific PET for non-malignant indications: systematic review. Ejnmmi Res. 2021;11(1):18. https://doi.org/10.1186/s13550-021-00761-2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Song Y, Qin C, Liu F, Lan X. Fibrous dysplasia mimicking skeletal metastasis on 68Ga-FAPI PET imaging. Clin Nucl Med. 2021;46(9):774–5. https://doi.org/10.1097/RLU.0000000000003671.

    Article  PubMed  Google Scholar 

  15. Wang Y, Yang X, Tian M, Lv H, Liu H. Orbital granulomatous inflammation mimicking malignancy on 68Ga-FAPI PET/CT. Clin Nucl Med. 2022;47(4):380–1. https://doi.org/10.1097/RLU.0000000000003982.

    Article  PubMed  Google Scholar 

  16. Gungor S, Selçuk NA. Benign bone cyst mimicking bone metastasis demonstrated on 68Ga-FAPI. Clin Nucl Med. 2022;47(1):e95–7. https://doi.org/10.1097/RLU.0000000000003796.

    Article  PubMed  Google Scholar 

  17. Ji Y, Shao C, Cui Y, Shi D, Su N, Wang Y, Zheng J. Sacral insufficiency fracture after radiotherapy for cervical cancer: appearance and dynamic changes on 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Contrast Media Mol Imaging. 2021;2021:5863530. https://doi.org/10.1155/2021/5863530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu X, Sun ZY, Wu HW, Zhang CP, Hu B, Rong L, Chen HY, Xie HY, Wang YM, Lin HP, Bai YR, Ye Q, Ma XM. Diffusion-weighted MRI and (18)F-FDG PET/CT in assessing the response to neoadjuvant chemoradiotherapy in locally advanced esophageal squamous cell carcinoma. Radiat Oncol. 2021;16(1):132. https://doi.org/10.1186/s13014-021-01852-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin C, Song Y, Liu X, Gai Y, Liu Q, Ruan W, Liu F, Hu F, Lan X. Increased uptake of (68)Ga-DOTA-FAPI-04 in bones and joints: metastases and beyond. Eur J Nucl Med Mol Imaging. 2022;49(2):709–20. https://doi.org/10.1007/s00259-021-05472-3.

    Article  CAS  PubMed  Google Scholar 

  20. Kessler L, Ferdinandus J, Hirmas N, Zarrad F, Nader M, Kersting D, Weber M, Kazek S, Sraieb M, Hamacher R, Lueckerath K, Umutlu L, Fendler WP, Rischpler C. Pitfalls and common findings in (68)Ga-FAPI PET: a pictorial analysis. J Nucl Med. 2022;63(6):890–6. https://doi.org/10.2967/jnumed.121.262808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qin C, Song Y, Liu X, Gai Y, Liu Q, Ruan W, Liu F, Hu F, Lan X. Increased uptake of (68)Ga-DOTA-FAPI-04 in bones and joints: metastases and beyond. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05472-3.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blüml S, Redlich K, Smolen JS. Mechanisms of tissue damage in arthritis. Semin Immunopathol. 2014;36(5):531–40. https://doi.org/10.1007/s00281-014-0442-8.

    Article  CAS  PubMed  Google Scholar 

  23. Hurnakova J, Filippucci E, Cipolletta E, Di Matteo A, Salaffi F, Carotti M, Draghessi A, Di Donato E, Di Carlo M, Lato V, Horvath R, Komarc M, Pavelka K, Grassi W. Prevalence and distribution of cartilage damage at the metacarpal head level in rheumatoid arthritis and osteoarthritis: an ultrasound study. Rheumatology (Oxford). 2019;58(7):1206–13. https://doi.org/10.1093/rheumatology/key443.

    Article  PubMed  Google Scholar 

  24. Papadakis GZ, Millo C, Bagci U, Sadowski SM, Stratakis CA. Schmorl Nodes can cause increased 68Ga DOTATATE activity on PET/CT, mimicking metastasis in patients with neuroendocrine malignancy. Clin Nucl Med. 2016;41(3):249–50. https://doi.org/10.1097/RLU.0000000000001065.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen YK, Chen HY, Kao CH. Schmorl’s node may cause an increased FDG activity. Clin Nucl Med. 2011;36(6):494–5. https://doi.org/10.1097/RLU.0b013e3182173967.

    Article  PubMed  Google Scholar 

  26. Mattei TA, Rehman AA. Schmorl’s nodes: current pathophysiological, diagnostic, and therapeutic paradigms. Neurosurg Rev. 2014;37(1):39–46. https://doi.org/10.1007/s10143-013-0488-4.

    Article  PubMed  Google Scholar 

  27. Levine BD, Motamedi K, Chow K, Gold RH, Seeger LL. CT of rib lesions. AJR Am J Roentgenol. 2009;193(1):5–13. https://doi.org/10.2214/AJR.08.1216.

    Article  PubMed  Google Scholar 

  28. Smith PC, Martínez C, Martínez J, McCulloch CA. Role of fibroblast populations in periodontal wound healing and tissue remodeling. Front Physiol. 2019;10:270. https://doi.org/10.3389/fphys.2019.00270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeffery AK. Osteophytes and the osteoarthritic femoral head. J Bone Joint Surg Br. 1975;57(3):314–24.

    Article  CAS  PubMed  Google Scholar 

  30. van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthritis Cartilage. 2007;15(3):237–44. https://doi.org/10.1016/j.joca.2006.11.006.

    Article  PubMed  Google Scholar 

  31. Liu H, Wang Y, Zhang W, Cai L, Chen Y. Elevated [(68)Ga]Ga-DOTA-FAPI-04 activity in degenerative osteophyte in a patient with lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(5):1671–2. https://doi.org/10.1007/s00259-020-05090-5.

    Article  PubMed  Google Scholar 

  32. Pang Y, Zhao L, Luo Z, Hao B, Wu H, Lin Q, Sun L, Chen H. Comparison of (68)Ga-FAPI and (18)F-FDG uptake in gastric, duodenal, and colorectal cancers. Radiology. 2021;298(2):393–402. https://doi.org/10.1148/radiol.2020203275.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was supported by funds from the National Natural Science Foundation of China (81872475 and 82073345), Natural Science Innovation and Development Joint Foundation of Shandong (ZR202209010002) and Jinan Clinical Medicine Science and Technology Innovation Plan (202019060), the Natural Science Foundation of Shandong Province (ZR2021QH008), and the Bethune Charitable Foundation (flzh202116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuchun Wei or Shuanghu Yuan.

Ethics declarations

Ethics approval and consent to participate

This retrospective study was approved by the local ethics committee of Shandong Cancer Hospital and Institute (reference number: SDZLEC2021-112–02).

Consent for publication

All the personal data involved in this article have been signed with informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Parts of this work have been accepted as oral presentation at the 2022 SNMMI Annual Meeting.

Yuchun Wei and Shuanghu Yuan are co-corresponding authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7111 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yan, S., Qin, X. et al. Increased 18F-FAPI uptake in bones and joints of lung cancer patients: characteristics and distributions. Skeletal Radiol 52, 2377–2386 (2023). https://doi.org/10.1007/s00256-023-04335-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04335-2

Keywords

Navigation