Skip to main content

Advertisement

Log in

Weight-bearing cone-beam CT: the need for standardised acquisition protocols and measurements to fulfill high expectations—a review of the literature

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

A Correction to this article was published on 03 May 2023

This article has been updated

Abstract

Weight bearing CT (WBCT) of the lower extremity is gaining momentum in evaluation of the foot/ankle and knee. A growing number of international studies use WBCT, which is promising for improving our understanding of anatomy and biomechanics during natural loading of the lower extremity. However, we believe there is risk of excessive enthusiasm for WBCT leading to premature application of the technique, before sufficiently robust protocols are in place e.g. standardised limb positioning and imaging planes, choice of anatomical landmarks and image slices used for individual measurements. Lack of standardisation could limit benefits from introducing WBCT in research and clinical practice because useful imaging information could become obscured. Measurements of bones and joints on WBCT are influenced by joint positioning and magnitude of loading, factors that need to be considered within a 3-D coordinate system. A proportion of WBCT studies examine inter- and intraobserver reproducibility for different radiological measurements in the knee or foot with reproducibility generally reported to be high. However, investigations of test–retest reproducibility are still lacking. Thus, the current ability to evaluate, e.g. the effects of surgery or structural disease progression, is questionable. This paper presents an overview of the relevant literature on WBCT in the lower extremity with an emphasis on factors that may affect measurement reproducibility in the foot/ankle and knee. We discuss the caveats of performing WBCT without consensus on imaging procedures and measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

© Onsight 3-D Extremity system (https://www.carestream.com/en/us/)

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IAB. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. EurJ Radiol. 1998;1564:1558–64

  2. Zbijweski W, Thawait GK, Zikria B, Del Grande F, Demehri S, AlMuhit A, et al. Extremity cone-beam CT for evaluation of medial tibiofemoral osteoarthritis: initial experience in imaging of the weight-bearing and non-weight-bearing knee. Eur J Radiol [Internet]. Elsevier Ireland Ltd; 2015;84:2564–70. Available from: https://doi.org/10.1016/j.ejrad.2015.09.003

  3. Tuominen EKJ, Kankare J, Koskinen SK, Mattila KT. Weight-bearing CT imaging of the lower extremity. Am J Roentgenol. 2013;200:146–8.

    Article  Google Scholar 

  4. Koivisto J, Kiljunen T, Wolff J, Kortesniemi M. Assessment of effective radiation dose ofan extremity cbct, msctand conventional x ray for knee area using mosfet dosemeters. Radiat Prot Dosimetry. 2013;157:515–24.

    Article  CAS  PubMed  Google Scholar 

  5. Ludlow JB, Johnson BK, Ivanovic M. Estimation of effective doses from MDCT and CBCT imaging of extremities. J Radiol Prot IOP Publishing. 2018;38:1371–83.

    Article  CAS  Google Scholar 

  6. Ludlow JB. Hand-wrist, knee, and foot-ankle dosimetry and image quality measurements of a novel extremity imaging unit providing CBCT and 2D imaging options. Med Phys. 2018;45:4955–63.

    Article  PubMed  Google Scholar 

  7. Mettler FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology. 2008;248:254–63.

    Article  PubMed  Google Scholar 

  8. Yorkston AJ, Töepfer K. Dose considerations FOR OnSight 3D extremity system. White paper, Carestream. 2017;1:3–5.

  9. Elena Cerasela S, Paolo C, Stefano D. Cone Beam CT equipment compared: PedCat, Planmed CT and CARESTREAM OnSight 3D Extremity System. J Adv Heal Care. 2020;2:3–7.

  10. Hirschmann A, Buck FM, Fucentese SF, Pfirrmann CWA. Upright CT of the knee: the effect of weight-bearing on joint alignment. Eur Radiol. 2015;25:3398–404.

    Article  PubMed  Google Scholar 

  11. Hirschmann A, Pfirrmann CWA, Klammer G, Espinosa N, Buck FM. Upright Cone CT of the hindfoot: Comparison of the non-weight-bearing with the upright weight-bearing position. Eur Radiol. 2014;24:553–8.

    Article  PubMed  Google Scholar 

  12. Osgood GM, Shakoor D, Orapin J, Qin J, Khodarahmi I, Thawait GK, et al. Reliability of distal tibio-fibular syndesmotic instability measurements using weightbearing and non-weightbearing cone-beam CT. Foot Ankle Surg [Internet]. European Foot Ankle Soc; 2019;25:771–81. Available from: https://doi.org/10.1016/j.fas.2018.10.003

  13. Kennelly H, Klaassen K, Heitman D, Youngberg R, Platt SR. Utility of weight-bearing radiographs compared to computed tomography scan for the diagnosis of subtle Lisfranc injuries in the emergency setting. EMA - Emerg Med Australas. 2019;31:741–4.

    Article  PubMed  Google Scholar 

  14. Marzo JM, Kluczynski MA, Notino A, Bisson LJ. Measurement of tibial tuberosity-trochlear groove offset distance by weightbearing cone-beam computed tomography scan. Orthop J Sport Med. 2017;5:1–5.

  15. Richter M, Seidl B, Zech S, Hahn S. PedCAT for 3D-imaging in standing position allows for more accurate bone position (angle) measurement than radiographs or CT. Foot Ankle Surg. 2014;20:201–7.

    Article  PubMed  Google Scholar 

  16. Marzo J, Kluczynski M, Notino A, Bisson L. Comparison of a novel weightbearing cone beam computed tomography scanner versus a conventional computed tomography scanner for measuring patellar instability. Orthop J Sport Med. 2016;4:1–7.

    Article  Google Scholar 

  17. Turmezei TD, B. Low S, Rupret S, Treece GM, Gee AH, MacKay JW, et al. Quantitative Three-dimensional assessment of knee joint space width from weight-bearing CT. Radiology. 2021;299:649–59.

  18. Fritz B, Fritz J, Fucentese SF, Pfirrmann CWA, Sutter R. Three-dimensional analysis for quantification of knee joint space width with weight-bearing CT: Comparison with non-weight-bearing CT and weight-bearing radiography. Osteoarthr Cartil [Internet]. Osteoarthr Res Soc Int (OARSI); 2021;105127. Available from: https://doi.org/10.1016/j.molp.2021.06.017

  19. Fritz B, Fucentese SF, Zimmermann SM, Tscholl PM, Sutter R, Pfirrmann CWA. 3D-printed anatomic models of the knee for evaluation of patellofemoral dysplasia in comparison to standard radiographs and computed tomography. Eur J Radiol. 2020;127:109011

  20. Lepojärvi S, Niinimäki J, Pakarinen H, Leskelä HV. Rotational dynamics of the normal distal tibiofibular joint with weight-bearing computed tomography. Foot Ankle Int. 2016;37:627–35.

    Article  PubMed  Google Scholar 

  21. Belvedere C, Giacomozzi C, Carrara C, Lullini G, Caravaggi P, Berti L, et al. Correlations between weight-bearing 3D bone architecture and dynamic plantar pressure measurements in the diabetic foot. J Foot Ankle Res. 2020;13:64.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bernasconi A, De Cesar NC, Barg A, Burssens A, Richter M, Lintz F. AAFD: Conventional Radiographs are not enough! i need the third dimension. Tech Foot Ankle Surg. 2019;18:109–15.

    Article  Google Scholar 

  23. Roemer FW. Weight-bearing CT for knee osteoarthritis assessment: a story unfolds. Radiology. 2021;00:1–2

  24. Lintz F, de Cesar Netto C, Barg A, Richter M, Burssens A. Weight-bearing cone beam CT scans in the foot and ankle. EFORT Open Rev. 2018;3:278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lintz F, Beaudet P, Richardi G, Brilhault J. Weight-bearing CT in foot and ankle pathology. Orthop Traumatol Surg Res France. 2021;107:102772.

    Article  Google Scholar 

  26. Godoy-Santos AL, Bernasconi A, Bordalo-Rodrigues M, Lintz F, Teixeira Lôbo CF, De Cesar NC. Weight-bearing cone-beam computed tomography in the foot and ankle specialty: Where we are and where we are going – an update. Radiol Bras. 2021;54:177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kassarjian A. Hip Hype: FAI syndrome, Amara’s Law, and the Hype Cycle. Semin Musculoskelet Radiol. 2019;23:252–6.

    Article  PubMed  Google Scholar 

  28. Marquez-Lara A, Andersen J, Lenchik L, Ferguson CM, Gupta P. Variability in patellofemoral alignment measurements on MRI: Influence of knee position. Am J Roentgenol. 2017;208:1097–102.

    Article  Google Scholar 

  29. Macri EM, Crossley KM, d’Entremont AG, Hart HF, Forster BB, Wilson DR, et al. Patellofemoral and tibiofemoral alignment in a fully weight-bearing upright MR: Implementation and repeatability. J Magn Reson Imaging [Internet]. 2017;1–7. Available from: https://doi.org/10.1002/jmri.25823

  30. Dietrich TJ, Betz M, Pfirrmann CWA, Koch PP, Fucentese SF. End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surgery Sport Traumatol Arthrosc. 2014;22:214–8.

    Article  Google Scholar 

  31. Hansen P, Johannsen FE, Hangaard S, Stallknecht SE, Hansen BB, Nybing JD, et al. Navicular bone position determined by positional MRI: a reproducibility study. Skeletal Radiol. 2016;45:205–11.

    Article  PubMed  Google Scholar 

  32. de Vet HCW, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59:1033–9.

    Article  PubMed  Google Scholar 

  33. Plesser HE. Reproducibility vs. Replicability: a brief history of a confused terminology. Front Neuroinform. 2018;11:1–4.

    Article  Google Scholar 

  34. Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol. 2008;31:466–75.

    Article  CAS  PubMed  Google Scholar 

  35. Hernaez R. Reliability and agreement studies: a guide for clinical investigators. Gut. 2015;64:1018–27.

    Article  PubMed  Google Scholar 

  36. Atkinson G, Nevill A. Typical error versus limits of agreement. Sport Med [Internet]. 2000;30:375–81. Available from: /home/michael/Dokumente/Exp.Ortho/Literatur%5CnAwiszus/pdf/5885.pdf

  37. PlanMed. White paper: Planmed Verity extraordinary adaptability. PlanMed. 2014;1:1–3.

  38. Carrino J, Bogner E. White paper: Cone beam CT: a technical explanation of image quality characteristics. CurveBeam. 2019;1:1–4.

  39. CurveBeam. Introducing the next level of weight bearing CT imaging: HiRise. 2020;1:3–6.

  40. Carestream. The Advantages of volumetric cone beam imaging for orthopaedic extremity exams Cone Beam CT Imaging for Extremities. Carestream. 2015;1:1–6.

  41. de Cesar Netto C, Richter M. Use of advanced weightbearing imaging in evaluation of hallux valgus. Foot Ankle Clin [Internet]. Elsevier Inc; 2020;25:31–45. Available from: https://doi.org/10.1016/j.fcl.2019.10.001

  42. Lintz F, Welck M, Bernasconi A, Thornton J, Cullen NPNP, Singh D, et al. 3D Biometrics for Hindfoot alignment using weightbearing CT. Foot Ankle Int. 2017;38:684–9.

    Article  PubMed  Google Scholar 

  43. Netto CDC, Schon LC, Thawait GK, Da Fonseca LF, Chinanuvathana A, Zbijewski WB, et al. Flexible adult acquired flatfoot deformity: comparison between weight-bearing and non-weight-bearing measurements using cone-beam computed tomography. J Bone Jt Surg - Am. 2017;99:e98.

    Article  Google Scholar 

  44. Broos M, Berardo S, Dobbe JGG, Maas M, Streekstra GJ, Wellenberg RHH. Geometric 3D analyses of the foot and ankle using weight-bearing and non weight-bearing cone-beam CT images: the new standard? Eur J Radiol [Internet]. Elsevier B.V.; 2021;138:109674. Available from: https://doi.org/10.1016/j.ejrad.2021.109674

  45. Lawlor MC, Kluczynski MA, Marzo JM. Weight-Bearing cone-beam CT scan assessment of stability of supination external rotation ankle fractures in a cadaver model. Foot Ankle Int. 2018;39:850–7.

    Article  PubMed  Google Scholar 

  46. Clyde C, Mutty CE, Anders MJ, Marzo JM, Ritter CA, Kluczynski MA. Weight bearing cone beam CT scan versus gravity stress radiography for analysis of supination external rotation injuries of the ankle. Quant Imaging Med Surg. 2018;7:678–84.

    Google Scholar 

  47. Welck M, Malhotra K, Goldberg AJ, Cullen N, Singh D. The effects of weight bearing on the distal tibiofibular syndesmosis: a study comparing weight bearing-CT with conventional CT. Foot Ankle Surg [Internet]. European Foot Ankle Soc. 2018; Available from: https://doi.org/10.1016/j.fas.2018.03.006

  48. Shakoor D, Osgood GM, Brehler M, Zbijewski WB, de Cesar Netto C, Shafiq B, et al. Cone-beam CT measurements of distal tibio-fibular syndesmosis in asymptomatic uninjured ankles: does weight-bearing matter? Skeletal Radiol. Skeletal Radiology. 2018;48:583–94.

  49. Krähenbühl N, Bailey TL, Presson AP, Allen CMC, Henninger HB, Saltzman CL, et al. Torque application helps to diagnose incomplete syndesmotic injuries using weight-bearing computed tomography images. Skeletal Radiol. 2019;48:1367–76.

    Article  PubMed  Google Scholar 

  50. Allen GM, Wilson DJ, Bullock SA, Watson M. Extremity CT and ultrasound in the assessment of ankle injuries: Occult fractures and ligament injuries. Br J Radiol. 2020;93:20180989

  51. Nakahara H, Okazaki K, Hamai S, Kawahara S, Higaki H, Mizu-uchi H, et al. Rotational alignment of the tibial component affects the kinematic rotation of a weight-bearing knee after total knee arthroplasty. Knee. 2015;22:201–5.

    Article  PubMed  Google Scholar 

  52. Nardi C, Buzzi R, Molteni R, Cossi C, Lorini C, Calistri L et al. The role of cone beam CT in the study of symptomatic total knee arthroplasty (TKA): A 20 cases report. Br J Radiol. 2017;90: 20160925

  53. Tschauner S, Marterer R, Nagy E, Singer G, Riccabona M, Sorantin E. Experiences with image quality and radiation dose of cone beam computed tomography (CBCT) and multidetector computed tomography (MDCT) in pediatric extremity trauma. Skeletal Radiol. 2020;49:1939–49.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Segal NA, Bergin J, Kern A, Findlay C, Anderson DD. Test–retest reliability of tibiofemoral joint space width measurements made using a low-dose standing CT scanner. Skeletal Radiol [Internet]. Skeletal Radiology; 2017;46:217–22. Available from: https://doi.org/10.1007/s00256-016-2539-8

  55. Aurell Y, Andersson MLE, Forslind K. Cone-beam computed tomography, a new low-dose three-dimensional imaging technique for assessment of bone erosions in rheumatoid arthritis: reliability assessment and comparison with conventional radiography–a BARFOT study. Scand J Rheumatol. 2018;47:173–7.

    Article  CAS  PubMed  Google Scholar 

  56. Shih CD, Bazarov I, Harrington T, Vartivarian M, Reyzelman AM. Initial report on the use of in-office cone beam computed tomography for early diagnosis of osteomyelitis in diabetic patients. J Am Podiatr Med Assoc. 2016;106:128–32.

    Article  PubMed  Google Scholar 

  57. Hirschmann A, Buck FM, Herschel R, Pfirrmann CWA, Fucentese SF. Upright weight-bearing CT of the knee during flexion: changes of the patellofemoral and tibiofemoral articulations between 0° and 120°. Knee Surg Sports Traumatol Arthrosc Germany. 2017;25:853–62.

    Article  Google Scholar 

  58. Lullini G, Belvedere C, Busacca M, Moio A, Leardini A, Caravelli S, et al. Weight bearing versus conventional CT for the measurement of patellar alignment and stability in patients after surgical treatment for patellar recurrent dislocation. Radiol Med Italy. 2021;126:869–77.

  59. Barg A, Bailey T, Richter M, de Cesar NC, Lintz F, Burssens A, et al. Weightbearing computed tomography of the foot and ankle: emerging technology topical review. Foot Ankle Int. 2018;39:376–86.

    Article  PubMed  Google Scholar 

  60. Burssens A, Peeters J, Buedts K, Victor J, Vandeputte G. Measuring hindfoot alignment in weight bearing CT: a novel clinical relevant measurement method. Foot Ankle Surg [Internet]. France: European Foot Ankle Soc. 2016;22:233–8. Available from: https://doi.org/10.1016/j.fas.2015.10.002

  61. Osgood GM, Shakoor D, Orapin J, Qin J, Khodarahmi I, Thawait GK, et al. Reliability of distal tibio-fibular syndesmotic instability measurements using weightbearing and non-weightbearing cone-beam CT. Foot ankle Surg Off J Eur Soc Foot Ankle Surg France. 2019;25:771–81.

    Article  Google Scholar 

  62. Burssens A, Peeters J, Peiffer M, Marien R, Lenaerts T, Vandeputte G, et al. Reliability and correlation analysis of computed methods to convert conventional 2D radiological hindfoot measurements to a 3D setting using weightbearing CT. Int J Comput Assist Radiol Surg Germany. 2018;13:1999–2008.

    Article  CAS  Google Scholar 

  63. Krähenbühl N, Tschuck M, Bolliger L, Hintermann B, Knupp M. Orientation of the subtalar joint: measurement and reliability using weightbearing CT scans. Foot ankle Int United States. 2016;37:109–14.

    Article  Google Scholar 

  64. Bernasconi A, Cooper L, Lyle S, Patel S, Cullen N, Singh D, et al. Intraobserver and interobserver reliability of cone beam weightbearing semi-automatic three-dimensional measurements in symptomatic pes cavovarus. Foot Ankle Surg [Internet]. European Foot Ankle Soc. 2019; Available from: https://doi.org/10.1016/j.fas.2019.07.005

  65. Lepojärvi S, Niinim J, Pakarinen H, Koskela L, Leskel H-V. Rotational dynamics of the talus in a normal tibiotalar joint as shown by weight-bearing computed tomography. J Bone Joint Surg Am. 2016;98-A:568–75.

    Article  Google Scholar 

  66. Koo TK, Li MY. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med [Internet]. Elsevier B.V.; 2016;15:155–63. Available from: https://doi.org/10.1016/j.jcm.2016.02.012

  67. Kido M, Ikoma K, Imai K, Maki M, Takatori R, Tokunaga D, et al. Load response of the tarsal bones in patients with flatfoot deformity: In vivo 3D study. Foot Ankle Int. 2011;32:1017–22.

    Article  PubMed  Google Scholar 

  68. Arunakul M, Amendola A, Gao Y, Goetz JE, Femino JE, Phisitkul P. Tripod index: a new radiographic parameter assessing foot alignment. Foot ankle Int. 2013;34:1411–20.

    Article  PubMed  Google Scholar 

  69. Burssens A, Peeters J, Buedts K, Victor J, Vandeputte G. Measuring hindfoot alignment in weight bearing CT: a novel clinical relevant measurement method. Foot Ankle Surg [Internet]. European Foot Ankle Soc. 2016;22:233–8. Available from: https://doi.org/10.1016/j.fas.2015.10.002

  70. Zhang JZ, Lintz F, Bernasconi A. 3D biometrics for hindfoot alignment Using weightbearing computed tomography. Foot Ankle Int. 2017;38:684–9.

    Article  Google Scholar 

  71. Kim J-B, Yi Y, Kim J-Y, Cho J-H, Kwon M-S, Choi S-H, et al. Weight-bearing computed tomography findings in varus ankle osteoarthritis: abnormal internal rotation of the talus in the axial plane. Skeletal Radiol Germany. 2017;46:1071–80.

    Article  Google Scholar 

  72. Cheung ZB, Myerson MS, Tracey J, Vulcano E. Weightbearing CT Scan assessment of foot alignment in patients with hallux rigidus. Foot ankle Int United States. 2018;39:67–74.

    Article  Google Scholar 

  73. Burssens A, Van Herzele E, Leenders T, Clockaerts S, Buedts K, Vandeputte G, et al. Weightbearing CT in normal hindfoot alignment - presence of a constitutional valgus? Foot ankle Surg Off J Eur Soc Foot Ankle Surg. France. 2018;24:213–8.

    CAS  Google Scholar 

  74. de Cesar NC, Shakoor D, Roberts L, Chinanuvathana A, Mousavian A, Lintz F, et al. Hindfoot alignment of adult acquired flatfoot deformity: a comparison of clinical assessment and weightbearing cone beam CT examinations. Foot Ankle Surg. 2019;25:790–7.

    Article  Google Scholar 

  75. Ota T, Nagura T, Yamada Y, Yamada M, Yokoyama Y, Ogihara N, et al. Effect of natural full weight-bearing during standing on the rotation of the first metatarsal bone. Clin Anat. 2019;32:715–21.

    Article  PubMed  Google Scholar 

  76. Jeng CL, Rutherford T, Hull MG, Cerrato RA, Campbell JT. Assessment of bony subfibular impingement in flatfoot patients using weight-bearing CT scans. Foot Ankle Int. 2019;40:152–8.

    Article  PubMed  Google Scholar 

  77. Krähenbühl N, Bailey TL, Weinberg MW, Davidson NP, Hintermann B, Presson AP, et al. Impact of torque on assessment of syndesmotic injuries using weightbearing computed tomography scans. Foot Ankle Int. 2019;40:710–9.

    Article  PubMed  Google Scholar 

  78. de Cesar NC, Shakoor D, Dein EJ, Zhang H, Thawait GK, Richter M, et al. Influence of investigator experience on reliability of adult acquired flatfoot deformity measurements using weightbearing computed tomography. Foot Ankle Surg. 2019;25:495–502.

    Article  Google Scholar 

  79. Krähenbühl N, Siegler L, Deforth M, Zwicky L, Hintermann B, Knupp M. Subtalar joint alignment in ankle osteoarthritis. Foot Ankle Surg [Internet]. European Foot Ankle Soc. 2019;25:143–9. Available from: https://doi.org/10.1016/j.fas.2017.10.004

  80. Scheele CB, Christel ST, Fröhlich I, Mehlhorn A, Walther M, Hörterer H et al. A cone beam CT based 3D-assessment of bony forefoot geometry after modified Lapidus arthrodesis. Foot Ankle Surg. Foot Ankle Surg. 2020;26:883–9.

  81. Kang DH, Kang C, Hwang DS, Song JH, Song SH. The value of axial loading three dimensional (3D) CT as a substitute for full weightbearing (standing) 3D CT: comparison of reproducibility according to degree of load. Foot Ankle Surg. 2019;25:215–20.

    Article  PubMed  Google Scholar 

  82. Krahenbuhl N, Akkaya M, Dodd AE, Hintermann B, Dutilh G, Lenz AL, et al. Impact of the rotational position of the hindfoot on measurements assessing the integrity of the distal tibio-fibular syndesmosis. Foot Ankle Surg [Internet]. European Foot Ankle Soc. 2019; Available from: https://doi.org/10.1016/j.fas.2019.10.010

  83. Krähenbühl N, Lenz AL, Lisonbee R, Deforth M, Zwicky L, Hintermann B, et al. Imaging of the subtalar joint: A novel approach to an old problem. J Orthop Res. 2019;37:921–6.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kaneda K, Harato K, Oki S, Ota T, Yamada Y, Yamada M, et al. Three-dimensional kinematic change of hindfoot during full weightbearing in standing: An analysis using upright computed tomography and 3D–3D surface registration. J Orthop Surg Res. 2019;14:1–8.

    Article  Google Scholar 

  85. de Cesar NC, Bernasconi A, Roberts L, Pontin PA, Lintz F, Saito GH, et al. Foot Alignment in symptomatic national basketball association players using weightbearing cone beam computed tomography. Orthop J Sport Med. 2019;7:1–8.

    Google Scholar 

  86. Ponkilainen VT, Partio N, Salonen EE, Riuttanen A, Luoma E-L, Kask G, et al. Inter- and intraobserver reliability of non-weight-bearing foot radiographs compared with CT in Lisfranc injuries. Arch Orthop Trauma Surg. 2020;140:1423–9.

    Article  PubMed  PubMed Central  Google Scholar 

  87. de Cesar Netto C, Saito GH, Roney A, Day J, Greditzer H, Sofka C, et al. Combined weightbearing CT and MRI assessment of flexible progressive collapsing foot deformity. Foot Ankle Surg. 2021;27:884–91.

  88. Burssens ABM, Buedts K, Barg A, Vluggen E, Demey P, Saltzman CL, et al. Is Lower-limb alignment associated with hindfoot deformity in the coronal plane? A Weightbearing CT Analysis. Clin Orthop Relat Res. 2020;478:154–68.

    Article  PubMed  Google Scholar 

  89. Lintz F, Mast J, Bernasconi A, Mehdi N, de Cesar NC, Fernando C, et al. 3D, Weightbearing Topographical study of periprosthetic cysts and alignment in total ankle replacement. Foot ankle Int United States. 2020;41:1–9.

    Article  Google Scholar 

  90. de Cesar NC, Bang K, Mansur NS, Garfinkel JH, Bernasconi A, Lintz F, et al. Multiplanar Semiautomatic assessment of foot and ankle offset in adult acquired flatfoot deformity. Foot Ankle Int. 2020;41:839–48.

    Article  Google Scholar 

  91. Gabel M. Weigh bearing cone beam computed tomography (WBCT) in the foot and ankle. A Scientific, Technical and Clinical Guide. Fuß Sprunggelenk. 2020

  92. Patel S, Bernasconi A, Thornton J, Buraimoh O, Cullen NP, Welck MJ, et al. Relationship between foot posture index and weight bearing computed tomography 3D biometrics to define foot alignment. Gait Posture England. 2020;80:143–7.

    Article  Google Scholar 

  93. del Rio A, Bewsher SM, Roshan-Zamir S, Tate J, Eden M, Gotmaker R, et al. Weightbearing cone-beam computed tomography of acute ankle syndesmosis injuries. J Foot Ankle Surg [Internet]. Elsevier Inc.; 2020;59:258–63. Available from: https://doi.org/10.1053/j.jfas.2019.02.005

  94. Sripanich Y, Steadman J, Krähenbühl N, Rungprai C, Mills MK, Saltzman CL, et al. Asymmetric lambda sign of the second tarsometatarsal joint on axial weight-bearing cone-beam CT scans of the foot: preliminary investigation for diagnosis of subtle ligamentous Lisfranc injuries in a cadaveric model. Skeletal Radiol. 2020;49:1615–21.

    Article  PubMed  Google Scholar 

  95. Kvarda P, Heisler L, Krähenbühl N, Steiner CS, Ruiz R, Susdorf R, et al. 3D Assessment in posttraumatic ankle osteoarthritis. Foot ankle Int United States. 2021;42:200–14.

    Article  Google Scholar 

  96. Shakoor D, de Cesar Netto C, Thawait GK, Ellis SJ, Richter M, Schon LC, et al. Weight-bearing radiographs and cone-beam computed tomography examinations in adult acquired flatfoot deformity. Foot Ankle Surg [Internet]. European Foot Ankle Soc. 2021;27:201–6. Available from: https://doi.org/10.1016/j.fas.2020.04.011

  97. Zhong Z, Zhang P, Duan H, Yang H, Li Q, He F. A Comparison between x-ray imaging and an innovative computer-aided design method based on weightbearing CT scan images for assessing hallux valgus. J Foot Ankle Surg. 2021;60:6–10.

    Article  PubMed  Google Scholar 

  98. Haldar A, Bernasconi A, Junaid SE, Lee KHB, Welck M, Saifuddin A. 3D imaging for hindfoot alignment assessment: a comparative study between non-weight-bearing MRI and weight-bearing CT. Skeletal Radiol Germany. 2021;50:179–88.

    Article  Google Scholar 

  99. Honkanen JTJ, Danso EK, Suomalainen J-S, Tiitu V, Korhonen RK, Jurvelin JS, et al. Contrast enhanced imaging of human meniscus using cone beam CT. Osteoarthr Cartil [Internet]. 2015;23:1367–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25865390. Accessed 14 May 2019.

  100. De Medeiros BG, Dos Santos HH, De Figueirêdo Dantas GA, Da Silva BR, Pinheiro SM, De Brito Vieira WH. Intra-rater and inter-instrument reliability on range of movement of active Knee extension. Motriz Rev Educ Fis. 2017;23:53–9.

    Article  Google Scholar 

  101. Marzo JM, Kluczynski MA, Notino A, Bisson LJ. Measurement of tibial tuberosity-trochlear groove offset distance by weightbearing cone-beam computed tomography scan. Orthop J Sport Med. 2017;5:1–5.

    Article  Google Scholar 

  102. Jaroma A, Suomalainen JS, Niemitukia L, Soininvaara T, Salo J, Kröger H. Imaging of symptomatic total knee arthroplasty with cone beam computed tomography. Acta radiol. 2018;59:1500–7.

    Article  PubMed  Google Scholar 

  103. Brehler M, Islam A, Vogelsang LO, Yang D, Sehnert WJ, Shakoor D et al. Coupled active shape models for automated segmentation and landmark localization in high-resolution CT of the foot and ankle. Proc SPIE Int Soc Opt Eng. 2019;10953:109530

  104. Dartus J, Jacques T, Martinot P, Pasquier G, Cotten A, Migaud H et al. The advantages of cone-beam computerised tomography (CT) in pain management following total knee arthroplasty, in comparison with conventional multi-detector CT. Orthop Traumatol Surg Res. France. 2021;107:102874.

  105. Demehri S, Hafezi-Nejad N, Carrino JA. Conventional and novel imaging modalities in osteoarthritis: current state of the evidence. Curr Opin Rheumatol. 2015;27:295–303.

    Article  PubMed  Google Scholar 

  106. Hagemeijer NC, Chang SH, Abdelaziz ME, Casey JC, Waryasz GR, Guss D et al. Range of normal and abnormal syndesmotic measurements using weightbearing CT. Foot Ankle Int. 2019;40:1430–7.

  107. Dubreuil T, Mouly J, Ltaief-Boudrigua A, Martinon A, Tilhet-Coartet S, Tazarourte K, et al. Comparison of cone-beam computed tomography and multislice computed tomography in the assessment of extremity fractures. J Comput Assist Tomogr. 2019;43:372–8.

    Article  PubMed  Google Scholar 

  108. Krähenbühl N, Bailey TL, Presson AP, Allen CM, Henninger HB, Saltzman CL, et al. Torque application helps to diagnose incomplete syndesmotic injuries using weight-bearing computed tomography images. Skelet Radiol Germany. 2019;48:1367–76.

    Article  Google Scholar 

  109. Sisniega A, Thawait GK, Shakoor D, Siewerdsen JH, Demehri S, Zbijewski W. Motion compensation in extremity cone-beam computed tomography. Skelet Radiol. 2019;48:1999–2007

  110. Patel S, Malhotra K, Cullen NP, Singh D, Goldberg AJ, Welck MJ. Defining reference values for the normal tibiofibular syndesmosis in adults using weight-bearing CT. Bone Joint J England. 2019;101-B:348–52.

    Article  CAS  Google Scholar 

  111. Jud L, Roth T, Roth T, Fürnstahl P, Vlachopoulos L, Sutter R et al. The impact of limb loading and the measurement modality (2D versus 3D) on the measurement of the limb loading dependent lower extremity parameters. BMC Musculoskelet Disord. 2020;21:418

  112. Grunz J-P, Pennig L, Fieber T, Gietzen CH, Heidenreich JF, Huflage H, et al. Twin robotic x-ray system in small bone and joint trauma: impact of cone-beam computed tomography on treatment decisions. Germany: Eur Radiol; 2020.

    Google Scholar 

  113. Bhimani R, Ashkani-Esfahani S, Lubberts B, Guss D, Hagemeijer NC, Waryasz G, et al. Utility of volumetric measurement via weight-bearing computed tomography scan to diagnose syndesmotic instability. Foot ankle Int United States. 2020;41:859–65.

    Article  Google Scholar 

  114. Hamard M, Neroladaki A, Bagetakos I, Dubois-Ferrière V, Montet X, Boudabbous S. Accuracy of cone-beam computed tomography for syndesmosis injury diagnosis compared to conventional computed tomography. Foot ankle Surg Off J Eur Soc Foot Ankle Surg France. 2020;26:265–72.

    Article  Google Scholar 

  115. Wellenberg RH, Dobbe JG, Erkkilä J, Maas M, Streekstra GJ. Marker-less assessment of the geometric error of fused cone-beam computed tomography images of the foot constructed using stitching software. Acta Radiol England. 2020;62:1341–8.

  116. Lohse C, Catala-Lehnen P, Regier M, Heiland M. Superior performance of cone beam tomography in detecting a calcaneus fracture. GMS Interdiscip Plast Reconstr Surg DGPW. 2015;4:Doc09.

    PubMed  PubMed Central  Google Scholar 

  117. Shih C-D, Bazarov I, Harrington T, Vartivarian M, Reyzelman AM. Initial Report on the use of in-office cone beam computed tomography for early diagnosis of osteomyelitis in diabetic patients. J Am Podiatr Med Assoc United States. 2016;106:128–32.

    Article  Google Scholar 

  118. Krähenbühl N, Akkaya M, Dodd AE, Hintermann B, Dutilh G, Lenz AL, et al. Impact of the rotational position of the hindfoot on measurements assessing the integrity of the distal tibio-fibular syndesmosis. Foot Ankle Surg [Internet]. European Foot Ankle Soc. 2019; Available from: https://doi.org/10.1016/j.fas.2019.10.010

  119. Pilania K, Jankharia B, Monoot P. Role of the weight-bearing cone-beam CT in evaluation of flatfoot deformity. Indian J Radiol Imaging. 2019;29:364–71.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Schlickewei C, Steadman J, Stürznickel J, Krähenbühl N, Frosch KH, Barg A, et al. Weightbearing computed tomography as a novel imaging modality: assessment of peritalar instability. Fuss und Sprunggelenk. 2021;19:2–10.

    Article  Google Scholar 

  121. Johannsen F, Hansen P, Stallknecht S, Rathleff MS, Hangaard S, Nybing JD, et al. Can positional MRI predict dynamic changes in the medial plantar arch? An exploratory pilot study. J Foot Ankle Res [Internet]. J Foot Ankle Res. 2016;9:1–8. Available from: https://doi.org/10.1186/s13047-016-0168-z

  122. Wolf P. Tarsal kinematics - Dissertation. Zurich Swiss Fed Inst Technol Zurich. 2006;1:1–135.

  123. Kvarda P, Krähenbühl N, Susdorf R, Burssens A, Ruiz R, Barg A et al. High reliability for semiautomated 3D measurements based on weightbearing CT scans. Foot Ankle Int. 2022;43:91–5.

  124. Gwani AS, Asari MA, Ismail ZIM. How the three arches of the foot intercorrelate. Folia Morphol. 2017;76:682–8.

    Article  CAS  Google Scholar 

  125. Shelton TJ, Singh S, Bent Robinson E, Nardo L, Escobedo E, Jackson L, et al. The influence of percentage weight-bearing on foot radiographs. Foot Ankle Spec. 2019;12:363–9.

    Article  PubMed  Google Scholar 

  126. Foumani M, Strackee SD, Van De Giessen M, Jonges R, Blankevoort L, Streekstra GJ. In-vivo dynamic and static three-dimensional joint space distance maps for assessment of cartilage thickness in the radiocarpal joint. Clin Biomech [Internet]. Elsevier Ltd; 2013;28:151–6. Available from: https://doi.org/10.1016/j.clinbiomech.2012.11.005

  127. Imai K, Ikoma K, Kido M, Maki M, Fujiwara H, Arai Y et al. Joint space width of the tibiotalar joint in the healthy foot. J Foot Ankle Res [Internet]. J Foot Ankle R. 2015;8:1–5. Available from: https://doi.org/10.1186/s13047-015-0086-5

  128. Conti MS, Patel TJ, Caolo KC, Amadio JM, Miller MC, Costigliola SV, et al. Correlation of different methods of measuring pronation of the first metatarsal on weightbearing CT scans. Foot Ankle Int. 2021;42:1049–59.

    Article  PubMed  Google Scholar 

  129. Lenz AL, Strobel MA, Anderson AM, Fial A V., MacWilliams BA, Krzak JJ et al. Assignment of local coordinate systems and methods to calculate tibiotalar and subtalar kinematics: A systematic review. J Biomech [Internet]. Elsevier LTD; 2021;120:110344. Available from: https://doi.org/10.1016/j.jbiomech.2021.110344

  130. Dobbe JGG, De Roo MGA, Visschers JC, Strackee SD, Streekstra GJ. Evaluation of a Quantitative method for carpal motion analysis using clinical 3-D and 4-D ct protocols. IEEE Trans Med Imaging IEEE. 2019;38:1048–57.

    Article  Google Scholar 

  131. Smith BW, Millar EA, Jones KC, Elias JJ. Variations in tibial tuberosity to trochlear groove and posterior cruciate ligament distances due to tibial external and valgus rotations. J Knee Surg. 2018;31:557–61.

    Article  PubMed  Google Scholar 

  132. Egund N, Skou N, Jacobsen B, Jurik AG. Measurement of tibial tuberosity — trochlear groove distance by MRI : assessment and correction of knee positioning errors. Skeletal Radiol [Internet]. Skelet Radiol. 2020; Available from: https://doi.org/10.1007/s00256-020-03605-7

  133. Kothari MD, Rabe KG, Anderson DD, Nevitt MC, Lynch JA, Franz H et al. The relationship of three-dimensional joint space width on weight-bearing CT with pain and physical function. J Orthop Res. 2019;1–7

  134. Yang J-S, Fredericson M, Choi J-H. The effect of patellofemoral pain syndrome on patellofemoral joint kinematics under upright weight-bearing conditions. PLoS ONE. 2020;15:e0239907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Maier A, Fahrig R, Unberath M, Thies J, Müller K, Choi J-H, et al. Marker-free motion correction in weight-bearing cone-beam CT of the knee joint. Med Phys. 2016;43:1235–48.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Brinch.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised. References 3 and 9 are duplicates (identical); hence, one was deleted and the references including their citations in the text were renumbered accordingly.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinch, S., Wellenberg, R.H.H., Boesen, M.P. et al. Weight-bearing cone-beam CT: the need for standardised acquisition protocols and measurements to fulfill high expectations—a review of the literature. Skeletal Radiol 52, 1073–1088 (2023). https://doi.org/10.1007/s00256-022-04223-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-022-04223-1

Keywords

Navigation