Skip to main content

Advertisement

Log in

Dual energy CT in musculoskeletal applications beyond crystal imaging: bone marrow maps and metal artifact reduction

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Dual energy CT (DECT) is becoming increasingly popular and valuable in the domain of musculoskeletal imaging. Gout maps and crystal detection have been predominant indications for about a decade. Other important indications of bone marrow maps and metal artifact reduction are also frequent with added advantages of detection and characterization of bone marrow lesions similar to MR imaging and diagnosis of hardware related complications, respectively. This article discusses technical considerations and physics of DECT imaging and its role in musculoskeletal indications apart from crystal imaging with respective case examples and review of the related literature. DECT pitfalls in these domains are also highlighted and the reader can gain knowledge of above concepts for prudent use of DECT in their musculoskeletal and general practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kramer H, Pickhardt PJ, Kliewer MA, et al. Accuracy of liver fat quantification with advanced CT, MRI, and ultrasound techniques: prospective comparison with MR spectroscopy. Am J Roentgenol. 2017;208(1):92–100.

    Article  Google Scholar 

  2. Chhana A, Doyle A, Sevao A, et al. Advanced imaging assessment of gout: comparison of dual-energy CT and MRI with anatomical pathology. Ann Rheum Dis. 2018;77(4):629–30.

    Article  PubMed  Google Scholar 

  3. Sanghavi PS, Jankharia BG. Applications of dual energy CT in clinical practice: A pictorial essay. Indian J Radiol Imaging. 2019;29(3):289. https://doi.org/10.4103/ijri.IJRI_241_19.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ko SM, Song MG, Chee HK, Hwang HK, Feuchtner GM, Min JK. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI. Am J Roentgenol. 2014;203(6):W605–13.

    Article  Google Scholar 

  5. Ohta Y, Kishimoto J, Kitao S, et al. Investigation of myocardial extracellular volume fraction in heart failure patients using iodine map with rapid-kV switching dual-energy CT: Segmental comparison with MRI T1 mapping. J Cardiovasc Comput Tomogr. 2020;14(4):349–55.

    Article  PubMed  Google Scholar 

  6. Ko SM, Choi JW, Song MG, et al. Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol. 2011;21(1):26–35.

    Article  PubMed  Google Scholar 

  7. Hounsfield GN. Computerized transverse axial scanning (tomography) Part 1. Description of system Br J Radiol. 1973;46(552):1016–22.

    Article  CAS  PubMed  Google Scholar 

  8. Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ. Extraction of information from CT scans at different energies. Med Phys. 1979;6(1):70–1. https://doi.org/10.1118/1.594555.

    Article  CAS  PubMed  Google Scholar 

  9. Di Chiro G, Brooks RA, Kessler RM, et al. Tissue Signatures with Dual-Energy Computed Tomography. Radiology. 1979;131(2):521–3. https://doi.org/10.1148/131.2.521.

    Article  CAS  PubMed  Google Scholar 

  10. Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271(2):327–42.

    Article  PubMed  Google Scholar 

  11. Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.

    Article  PubMed  Google Scholar 

  12. Ghazi Sherbaf F, Sair HI, Shakoor D, et al. DECT in Detection of Vertebral Fracture–associated Bone Marrow Edema: A Systematic Review and Meta-Analysis with Emphasis on Technical and Imaging Interpretation Parameters. Radiology. 2021;300(1):110–9.

    Article  PubMed  Google Scholar 

  13. D’Angelo T, Albrecht MH, Caudo D, et al. Virtual non-calcium dual-energy CT: clinical applications. Eur Radiol Exp. 2021;5(1):1–13.

    Article  Google Scholar 

  14. McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology. 2015;276(3):637–53. https://doi.org/10.1148/radiol.2015142631.

    Article  PubMed  Google Scholar 

  15. Johnson TR. Dual-energy CT general principles. Am J Roentgenol. 2012;199(5_supplement):S3–8.

    Article  Google Scholar 

  16. Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P. Dual-energy CT a promising new technique for assessment of the musculoskeletal system. Am J Roentgenol. 2012;199(5_supplement):S78–86.

    Article  Google Scholar 

  17. Ascenti G, Krauss B, Mazziotti S, et al. Dual-energy computed tomography (DECT) in renal masses: nonlinear versus linear blending. Acad Radiol. 2012;19(10):1186–93.

    Article  PubMed  Google Scholar 

  18. Yu L, Leng S, McCollough CH. Dual-energy CT–based monochromatic imaging. Am J Roentgenol. 2012;199(5_supplement):S9–15.

    Article  Google Scholar 

  19. Mahgerefteh S, Blachar A, Fraifeld S, Sosna J. Dual-energy derived virtual nonenhanced computed tomography imaging: current status and applications. In: Seminars in Ultrasound, CT and MRI, vol 31. Elsevier; 2010:321–7. https://doi.org/10.1053/j.sult.2010.06.001.

  20. Gosangi B, Mandell JC, Weaver MJ, et al. Bone Marrow Edema at Dual-Energy CT A Game Changer in the Emergency Department. Radiogr Rev Publ Radiol Soc N Am Inc. 2020;40(3):859–74. https://doi.org/10.1148/rg.2020190173.

    Article  Google Scholar 

  21. Rajiah P, Sundaram M, Subhas N. Dual-energy CT in musculoskeletal imaging: what is the role beyond gout? Am J Roentgenol. 2019;213(3):493–505. https://doi.org/10.2214/AJR.19.21095.

    Article  Google Scholar 

  22. Wortman JR, Uyeda JW, Fulwadhva UP, Sodickson AD. Dual-energy CT for abdominal and pelvic trauma. Radiographics. 2018;38(2):586–602.

    Article  PubMed  Google Scholar 

  23. Pache G, Krauss B, Strohm P, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology. 2010;256(2):617–24.

    Article  PubMed  Google Scholar 

  24. Reddy T, McLaughlin PD, Mallinson PI, et al. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol. 2015;22(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  25. Dominguez S, Liu P, Roberts C, Mandell M, Richman PB. Prevalence of traumatic hip and pelvic fractures in patients with suspected hip fracture and negative initial standard radiographs—a study of emergency department patients. Acad Emerg Med. 2005;12(4):366–9.

    PubMed  Google Scholar 

  26. Gotis-Graham I, McGuigan L, Diamond T, et al. Sacral insufficiency fractures in the elderly. J Bone Joint Surg Br. 1994;76(6):882–6.

    Article  CAS  PubMed  Google Scholar 

  27. Grangier C, Garcia J, Howarth NR, May M, Rossier P. Role of MRI in the diagnosis of insufficiency fractures of the sacrum and acetabular roof. Skeletal Radiol. 1997;26(9):517–24.

    Article  CAS  PubMed  Google Scholar 

  28. Shivanna D, Manjunath D, Amaravathi R. Greater arch injuries. J Hand Microsurg. 2014;6(02):69–73.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ali IT, Wong WD, Liang T, et al. Clinical utility of dual-energy CT analysis of bone marrow edema in acute wrist fractures. Am J Roentgenol. 2018;210(4):842–7.

    Article  Google Scholar 

  30. Kellock TT, Nicolaou S, Kim SS, et al. Detection of bone marrow edema in nondisplaced hip fractures: utility of a virtual noncalcium dual-energy CT application. Radiology. 2017;284(3):798–805.

    Article  PubMed  Google Scholar 

  31. Kim SJ, Ahn J, Kim HK, Kim JH. Is magnetic resonance imaging necessary in isolated greater trochanter fracture? A systemic review and pooled analysis. BMC Musculoskelet Disord. 2015;16(1):1–6.

    Article  Google Scholar 

  32. Arshad R, Riaz O, Aqil A, Bhuskute N, Ankarath S. Predicting intertrochanteric extension of greater trochanter fractures of the hip on plain radiographs. Injury. 2017;48(3):692–4.

    Article  PubMed  Google Scholar 

  33. Narayanan A, Dettori N, Chalian M, Xi Y, Komarraju A, Chhabra A. Dual-energy CT-generated bone marrow oedema maps improve timely visualisation and recognition of acute lower extremity fractures. Clin Radiol: Published online; 2021.

    Book  Google Scholar 

  34. Pham T, Azulay-Parrado J, Champsaur P, Chagnaud C, Legré V, Lafforgue P. “Occult” osteoporotic vertebral fractures: vertebral body fractures without radiologic collapse. Spine. 2005;30(21):2430–5.

    Article  PubMed  Google Scholar 

  35. Karaca L, Yuceler Z, Kantarci M, et al. The feasibility of dual-energy CT in differentiation of vertebral compression fractures. Br J Radiol. 2016;89(1057):20150300.

    Article  PubMed  Google Scholar 

  36. Cavallaro M, D’Angelo T, Albrecht MH, et al. Comprehensive comparison of dual-energy computed tomography and magnetic resonance imaging for the assessment of bone marrow edema and fracture lines in acute vertebral fractures. Eur Radiol. 2022 Jan;32(1):561–71. https://doi.org/10.1007/s00330-021-08081-8.

  37. Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. Am J Roentgenol. 2004;183(4):949–58.

    Article  Google Scholar 

  38. Marshall RA, Weaver MJ, Sodickson A, Khurana B. Periprosthetic femoral fractures in the emergency department: what the orthopedic surgeon wants to know. Radiographics. 2017;37(4):1202–17.

    Article  PubMed  Google Scholar 

  39. Griffiths EJ, Cash DJW, Kalra S, Hopgood PJ. Time to surgery and 30-day morbidity and mortality of periprosthetic hip fractures. Injury. 2013;44(12):1949–52.

    Article  CAS  PubMed  Google Scholar 

  40. Fukuda T, Umezawa Y, Asahina A, Nakagawa H, Furuya K, Fukuda K. Dual energy CT iodine map for delineating inflammation of inflammatory arthritis. Eur Radiol. 2017;27(12):5034–40.

    Article  PubMed  Google Scholar 

  41. Diekhoff T, Scheel M, Hermann S, Mews J, Hamm B, Hermann KGA. Osteitis: a retrospective feasibility study comparing single-source dual-energy CT to MRI in selected patients with suspected acute gout. Skeletal Radiol. 2017;46(2):185–90.

    Article  PubMed  Google Scholar 

  42. Duer-Jensen A, Hørslev-Petersen K, Hetland ML, et al. Bone edema on magnetic resonance imaging is an independent predictor of rheumatoid arthritis development in patients with early undifferentiated arthritis. Arthritis Rheum. 2011;63(8):2192–202.

    Article  PubMed  Google Scholar 

  43. McQueen FM, Dalbeth N. Predicting joint damage in rheumatoid arthritis using MRI scanning. Arthritis Res Ther. 2009;11:124. https://doi.org/10.1186/ar2778.

  44. Remuzgo-Martínez S, Genre F, López-Mejías R, et al. Expression of osteoprotegerin and its ligands, RANKL and TRAIL, in rheumatoid arthritis. Sci Rep. 2016;6(1):1–5.

    Article  CAS  Google Scholar 

  45. Østergaard M, Emery P, Conaghan PG, et al. Significant improvement in synovitis, osteitis, and bone erosion following golimumab and methotrexate combination therapy as compared with methotrexate alone: A magnetic resonance imaging study of 318 methotrexate-naive rheumatoid arthritis patients. Arthritis Rheum. 2011;63(12):3712–22.

    Article  PubMed  CAS  Google Scholar 

  46. Krabbe S, Eshed I, Pedersen SJ, et al. Bone marrow oedema assessment by magnetic resonance imaging in rheumatoid arthritis wrist and metacarpophalangeal joints: the importance of field strength, coil type and image resolution. Rheumatology. 2014;53(8):1446–51.

    Article  PubMed  Google Scholar 

  47. Burke MC, Garg A, Youngner JM, Deshmukh SD, Omar IM. Initial experience with dual-energy computed tomography-guided bone biopsies of bone lesions that are occult on monoenergetic CT. Skeletal Radiol. 2019;48(4):605–13.

    Article  PubMed  Google Scholar 

  48. Zheng S, Dong Y, Miao Y, et al. Differentiation of osteolytic metastases and Schmorl’s nodes in cancer patients using dual-energy CT: advantage of spectral CT imaging. Eur J Radiol. 2014;83(7):1216–21.

    Article  PubMed  Google Scholar 

  49. Dong Y, Zheng S, Machida H, et al. Differential diagnosis of osteoblastic metastases from bone islands in patients with lung cancer by single-source dual-energy CT: advantages of spectral CT imaging. Eur J Radiol. 2015;84(5):901–7.

    Article  PubMed  Google Scholar 

  50. Kraus M, Weiss J, Selo N, et al. Spinal dual-energy computed tomography: improved visualisation of spinal tumorous growth with a noise-optimised advanced monoenergetic post-processing algorithm. Neuroradiology. 2016;58(11):1093–102.

    Article  PubMed  Google Scholar 

  51. Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics. 2004;24(6):1679–91.

    Article  PubMed  Google Scholar 

  52. Coupal TM, Mallinson PI, McLaughlin P, Nicolaou S, Munk PL, Ouellette H. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skeletal Radiol. 2014;43(5):567–75.

    Article  PubMed  Google Scholar 

  53. Suh JS, Jeong EK, Shin KH, et al. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. AJR Am J Roentgenol. 1998;171(5):1207–13.

    Article  CAS  PubMed  Google Scholar 

  54. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TRC. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424–9. https://doi.org/10.1007/s00330-011-2062-1.

    Article  PubMed  Google Scholar 

  55. Zhou C, Zhao YE, Luo S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol. 2011;18(10):1252–7.

    Article  PubMed  Google Scholar 

  56. Wang Y, Qian B, Li B, et al. Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol. 2013;82(8):e360–6.

    Article  PubMed  Google Scholar 

  57. Lewis M, Reid K, Toms AP. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skeletal Radiol. 2013;42(2):275–82.

    Article  PubMed  Google Scholar 

  58. Patel BN, Marin D. Strategies to improve image quality on dual-energy computed tomography. Radiol Clin. 2018;56(4):641–7.

    Article  Google Scholar 

  59. Kim YJ, Cha JG, Kim H, Yi JS, Kim HJ. Dual-energy and iterative metal artifact reduction for reducing artifacts due to metallic hardware: a loosening hip phantom study. Am J Roentgenol. 2019;212(5):1106–11.

    Article  Google Scholar 

  60. Long Z, DeLone DR, Kotsenas AL, et al. Clinical assessment of metal artifact reduction methods in dual-energy CT examinations of instrumented spines. Am J Roentgenol. 2019;212(2):395–401.

    Article  Google Scholar 

  61. Vande Berg BC, Lecouvet FE, Poilvache P, Dubuc JE, Maldague B, Malghem J. Anterior cruciate ligament tears and associated meniscal lesions: assessment at dual-detector spiral CT arthrography. Radiology. 2002;223(2):403–9.

    Article  PubMed  Google Scholar 

  62. Sun C, Miao F, ming WX, et al. An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anat. 2008;30(5):443–7.

    Article  PubMed  Google Scholar 

  63. Wong WD, Shah S, Murray N, Walstra F, Khosa F, Nicolaou S. Advanced musculoskeletal applications of dual-energy computed tomography. Radiol Clin. 2018;56(4):587–600.

    Article  Google Scholar 

  64. Sandhu R, Aslan M, Obuchowski N, Primak A, Karim W, Subhas N. Dual-energy CT arthrography: a feasibility study. Skeletal Radiol. 2021;50(4):693–703.

    Article  PubMed  Google Scholar 

  65. Jarraya M, Roemer FW, Gale HI, Landreau P, D’Hooghe P, Guermazi A. MR-arthrography and CT-arthrography in sports-related glenolabral injuries: a matched descriptive illustration. Insights Imaging. 2016;7(2):167–77.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Acid S, Le Corroller T, Aswad R, Pauly V, Champsaur P. Preoperative imaging of anterior shoulder instability: diagnostic effectiveness of MDCT arthrography and comparison with MR arthrography and arthroscopy. Am J Roentgenol. 2012;198(3):661–7.

    Article  Google Scholar 

  67. Christie-Large M, Tapp MJF, Theivendran K, James SLJ. The role of multidetector CT arthrography in the investigation of suspected intra-articular hip pathology. Br J Radiol. 2010;83(994):861–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology. 2013;269(2):525–33.

    Article  PubMed  Google Scholar 

  69. Patel BN, Alexander L, Allen B, et al. Dual-energy CT workflow: multi-institutional consensus on standardization of abdominopelvic MDCT protocols. Abdom Radiol. 2017;42(3):676–87.

    Article  Google Scholar 

  70. Pache G, Bulla S, Baumann T, et al. Dose reduction does not affect detection of bone marrow lesions with dual-energy CT virtual noncalcium technique. Acad Radiol. 2012;19(12):1539–45.

    Article  PubMed  Google Scholar 

  71. Palmer WE, Simeone FJ. Can dual-energy CT challenge MR imaging in the diagnosis of focal infiltrative bone marrow lesions? Radiology 2018;286:1, 214–6. https://doi.org/10.1148/radiol.2017172325.

  72. Thomas C, Schabel C, Krauss B, et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. Am J Roentgenol. 2015;204(3):W324–31.

    Article  Google Scholar 

  73. Long Z, Bruesewitz MR, DeLone DR, et al. Evaluation of projection-and dual-energy-based methods for metal artifact reduction in CT using a phantom study. J Appl Clin Med Phys. 2018;19(4):252–60.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avneesh Chhabra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheraya, G., Sharma, S. & Chhabra, A. Dual energy CT in musculoskeletal applications beyond crystal imaging: bone marrow maps and metal artifact reduction. Skeletal Radiol 51, 1521–1534 (2022). https://doi.org/10.1007/s00256-021-03979-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03979-2

Keywords

Navigation