Skip to main content

Advertisement

Log in

Systematic review: investigating the added diagnostic value of gadolinium contrast agents for osteomyelitis in the appendicular skeleton

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Osteomyelitis is an infection of the bone marrow. MRI with gadolinium-based contrast is frequently performed for cases of suspected osteomyelitis. The objective of this systematic review is to examine the diagnostic accuracy of contrast-enhanced vs non-contrast–enhanced MRI for osteomyelitis in the appendicular skeleton.

Materials and methods

We conducted a systematic review of MRI in the diagnosis of osteomyelitis by searching MEDLINE and EMBASE from January 2000 to March 2020. There were 21 studies that met the inclusion criteria for the systematic review for a total of 1095 patients. Analytic methods were based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Evidence was evaluated using the STARD criteria for evaluation of completeness and transparency of reporting.

Results

For diagnosing osteomyelitis in the appendicular skeleton, MRI with gadolinium-based contrast has 89% sensitivity (95% CI, 86–92%), 79% specificity (95% CI, 75–83%), and 90% overall diagnostic accuracy ([SE] = 0.03). For diagnosing osteomyelitis in the appendicular skeleton, MRI without gadolinium-based contrast has a 92% sensitivity (95% CI, 87–96%), 89% specificity (95% CI, 84–93%), and 96% overall diagnostic accuracy ([SE] = 0.03). The median score of included studies was 85% utilizing the STARD criteria with excellent interobserver agreement of 83.4%. Limitations included small sample size of studies, with retrospective designs.

Conclusion

No evidence was found to suggest an added diagnostic value of gadolinium contrast for the diagnosis of osteomyelitis in the appendicular skeleton. For routine cases of suspected non-spinal osteomyelitis, non-contrast MRI of the area of interest is the next most appropriate study after radiographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kremers HM, Nwojo ME, Ransom JE, Wood-Wentz CM, Joseph Melton L, Huddleston PM. Trends in the epidemiology of osteomyelitis a population-based study, 1969 to 2009. J Bone Jt Surg Am. 2014;97(10):837–45.

    Article  Google Scholar 

  2. Mandell JC, Khurana B, Smith JT, Czuczman GJ, Ghazikhanian V, Smith SE. Osteomyelitis of the lower extremity: pathophysiology, imaging, and classification, with an emphasis on diabetic foot infection. Emerg Radiol. 2018;25(2):175–88.

    Article  PubMed  Google Scholar 

  3. Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Philadelphia, PA: Churchill Livingstone Elsevier; 2009. p. 4320.

    Google Scholar 

  4. Tan PL, Teh J. MRI of the diabetic foot: Differentiation of infection from neuropathic change. Br J Radiol. 2007;80(959):939–48.

    Article  CAS  PubMed  Google Scholar 

  5. David R, Barron BJ, Madewell JE. Osteomyelitis, acute and chronic. Radiol Clin North Am. 1987;25(6):1171–201.

    Article  CAS  PubMed  Google Scholar 

  6. Beaman FD, von Herrmann PF, Kransdorf MJ, Adler RS, Amini B, Appel M, et al. ACR appropriateness criteria® suspected osteomyelitis, septic arthritis, or soft tissue infection (Excluding Spine and Diabetic Foot). J Am Coll Radiol. 2017;14(5S):S326–37.

    Article  PubMed  Google Scholar 

  7. Johnson PW, Collins MS, Wenger DE. Diagnostic utility of T1-weighted MRI characteristics in evaluation of osteomyelitis of the foot. Am J Roentgenol. 2009;192(1):96–100.

    Article  Google Scholar 

  8. Collins MS, Schaar MM, Wenger DE, Mandrekar JN. T1-weighted MRI characteristics of pedal osteomyelitis. Am J Roentgenol. 2005;185(2):386–93.

    Article  Google Scholar 

  9. Howe BM, Wenger DE, Mandrekar J, Collins MS. T1-weighted MRI imaging features of pathologically proven non-pedal osteomyelitis. Acad Radiol. 2013;20(1):108–14.

    Article  PubMed  Google Scholar 

  10. Ledermann HP, Schweitzer ME, Morrison WB. Nonenhancing tissue on MR imaging of pedal infection: Characterization of necrotic tissue and associated limitations for diagnosis of osteomyelitis and abscess. Am J Roentgenol. 2002;178(1):215–22.

    Article  Google Scholar 

  11. Al-Khawari HA, Al-Saeed OM, Jumaa TH, Chishti F. Evaluating diabetic foot infection with magnetic resonance imaging: Kuwait experience. Med Princ Pract. 2005;14(3):165–72.

    Article  PubMed  Google Scholar 

  12. Kan JH, Young RS, Yu C, Hernanz-Schulman M. Clinical impact of gadolinium in the MRI diagnosis of musculoskeletal infection in children. Pediatr Radiol. 2010;40(7):1197–205.

    Article  PubMed  Google Scholar 

  13. Marcus CD, Ladam-Marcus VJ, Leone J, Malgrange D, Bonnet-Gausserand FM, Menanteau BP. MR Imaging of osteomyelitis and neuropathic osteoarthropathy in the feet of diabetics. Radiographics. 1996;16(6):1337–48.

    Article  CAS  PubMed  Google Scholar 

  14. Averill LW, Hernandez A, Gonzalez L, Peña AH, Jaramillo D. Diagnosis of osteomyelitis in children: utility of fat-suppressed contrast-enhanced MRI. Am J Roentgenol. 2009;192(5):1232–8.

    Article  Google Scholar 

  15. Hopkins KL, Li KCP, Bergman G. Gadolinium-DTPA-enhanced magnetic resonance imaging of musculoskeletal infectious processes. Skeletal Radiol. 1995;24(5):325–30.

    Article  CAS  PubMed  Google Scholar 

  16. Craig JG, Amin MB, Wu K, Eyler WR, Van Holsbeeck MT, Bouffard JA, et al. Osteomyelitis of the diabetic foot: MR imaging-pathologic correlation. Radiology. 1997;203(3):849–55.

    Article  CAS  PubMed  Google Scholar 

  17. Morrison WB, Schweitzer ME, Bock GW, Mitchell DG, Hume EL, Pathria MN, et al. Diagnosis of osteomyelitis: Utility of fat-suppressed contrast-enhanced MR imaging. Radiology. 1993;189(1):251–7.

    Article  CAS  PubMed  Google Scholar 

  18. Miller TT, Randolph DA, Staron RB, Feldman F, Cushin S. Fat-suppressed MRI of musculoskeletal infection: Fast T2-weighted techniques versus gadolinium-enhanced T1-weighted images. Skeletal Radiol. 1997;26(11):654–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ledneva E, Karie S, Launay-Vacher V, Janus N, Deray G. Renal safety of gadolinium- Based contrast media in patients with chronic renal insufficiency. Radiology. 2009;250(3):618–28.

    Article  PubMed  Google Scholar 

  20. Desai K, Warade AC, Jha AK, Pattankar S. Injection-related iatrogenic peripheral nerve injuries: Surgical experience of 354 operated cases. Neurol India. 2019;67(Supplement):S82-91.

    Article  PubMed  Google Scholar 

  21. Chien CC, Wang HY, Wang JJ, Kan WC, Chien TW, Lin CY, et al. Risk of acute kidney injury after exposure to gadolinium-based contrast in patients with renal impairment. Ren Fail. 2011;33(8):758–64.

    Article  CAS  PubMed  Google Scholar 

  22. Ergün I, Keven K, Uruç I, Ekmekçi Y, Canbakan B, Erden I, et al. The safety of gadolinium in patients with stage 3 and 4 renal failure. Nephrol Dial Transplant. 2006;21(3):697–700.

    Article  PubMed  Google Scholar 

  23. Cowling T, Frey N. Macrocyclic and linear gadolinium based contrast agents for adults undergoing magnetic resonance imaging: A review of safety. Canadian Agency for Drugs and Technologies in Health, Ottawa (ON); 2019.  Available from: http://europepmc.org/abstract/MED/31498577. Accessed  2 Aug 2020.

  24. Korevaar DA, Cohen JF, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, et al. Updating standards for reporting diagnostic accuracy: the development of STARD 2015. Res Integr Peer Rev. 2016;1(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: A software for meta-analysis of test accuracy data. BMC Med Res Methodol. 2006 [cited 2020 Aug 2];6(1):1–12. Available from: https://doi.org/10.1186/1471-2288-6-31.

  26. Jones CM, Athanasiou T. Summary receiver operating characteristic curve analysis techniques in the evaluation of diagnostic tests. Ann Thorac Surg. 2005;79(1):16–20.

    Article  PubMed  Google Scholar 

  27. Ashby D. Practical statistics for medical research. Douglas G. Altman, Chapman and Hall, London. Stat Med. 1991;10(10):1635–6.

  28. Kaim A, Ledermann HP, Bongartz G, Messmer P, Müller-Brand J, Steinbrich W. Chronic post-traumatic osteomyelitis of the lower extremity: comparison of magnetic resonance imaging and combined bone scintigraphy/immunoscintigraphy with radiolabelled monoclonal antigranulocyte antibodies. Skeletal Radiol. 2000;29(7):378–86.

    Article  CAS  PubMed  Google Scholar 

  29. Mahnken AH, Bücker A, Adam G, Günther RW. MRT der osteomyelitis: Sensitivität und spezifität der STIR-Sequenz im vergleich zur kontrastangehobenen T1-spinechosequenz. RoFo. 2000;172(12):1016–9.

    Article  CAS  PubMed  Google Scholar 

  30. Maas M, Slim EJ, Heoksma AF, Van Der Kleij AJ, Akkerman EM, Den Heeten GJ, et al. MR imaging of neuropathic feet in leprosy patients with suspected osteomyelitis. Int J Lepr Other Mycobact Dis. 2002;70(2):97–103.

    PubMed  Google Scholar 

  31. Ertugrul MB, Baktiroglu S, Salman S, Unal S, Aksoy M, Berberoglu K, et al. The diagnosis of osteomyelitis of the foot in diabetes: microbiological examination vs. magnetic resonance imaging and labelled leucocyte scanning. Diabet Med. 2006;23(6):649–53.

  32. Schwegler B, Stumpe KDM, Weishaupt D, Strobel K, Spinas GA, von Schulthess GK, et al. Unsuspected osteomyelitis is frequent in persistent diabetic foot ulcer and better diagnosed by MRI than by 18F-FDG PET or 99mTc-MOAB. J Intern Med. 2008;263(1):99–106.

    CAS  PubMed  Google Scholar 

  33. Rozzanigo U, Tagliani A, Vittorini E, Pacchioni R, Brivio LR, Caudana R. Role of magnetic resonance imaging in the evaluation of diabetic foot with suspected osteomyelitis. Radiol Med. 2009;114(1):121–32.

    Article  CAS  PubMed  Google Scholar 

  34. Nawaz A, Torigian DA, Siegelman ES, Basu S, Chryssikos T, Alavi A. Diagnostic performance of FDG-PET, MRI, and plain film radiography (PFR) for the diagnosis of osteomyelitis in the diabetic foot. Mol Imaging Biol. 2010;12(3):335–42.

    Article  PubMed  Google Scholar 

  35. Zaiton F, Samir AM, Elkamash TH, Tawfik AM, Hadhoud KM. Evaluation of diabetic foot osteomyelitis using probe to bone test and magnetic resonance imaging and their impact on surgical intervention. Egypt J Radiol Nucl Med. 2014;45(3):795–802.

    Article  Google Scholar 

  36. Schlung JE, Bastrom TP, Roocroft JH, Newton PO, Mubarak SJ, Upasani VV. Femoral Neck Aspiration Aids in the Diagnosis of Osteomyelitis In Children With Septic Hip. J Pediatr Orthop. 2018;38(10):532–6.

    Article  PubMed  Google Scholar 

  37. Brunel A-S, Lamy B, Cyteval C, Perrochia H, Téot L, Masson R, et al. Diagnosing pelvic osteomyelitis beneath pressure ulcers in spinal cord injured patients: a prospective study. Clin Microbiol Infect. 2016;22(3):267.e1-267.e8.

    Article  Google Scholar 

  38. La Fontaine J, Bhavan K, Lam K, Van Asten S, Erdman W, Lavery LA, et al. Comparison between Tc-99m WBC SPECT/CT and MRI for the diagnosis of biopsy-proven diabetic foot osteomyelitis. Wounds. 2016;28(8):271–8.

    PubMed  Google Scholar 

  39. Mahendra M, Singh R. Diagnostic accuracy and surgical utility of MRI in complicated diabetic foot. J Clin Diagnostic Res. 2017;11(7):RC01–RC04.

  40. McCarthy J, Hartmann E, Bentz ML, Rao VK, Jee Y, Rivedal D, et al. Seeing is believing? Preoperative magnetic resonance imaging for pressure ulcers: Implications for surgical management. Plast Reconstr Surg Glob Open. 2017;5(3):e1263.

  41. Rastogi A, Bhattacharya A, Prakash M, Sharma S, Mittal BR, Khandelwal N, et al. Utility of PET/CT with fluorine-18-fluorodeoxyglucose-labeled autologous leukocytes for diagnosing diabetic foot osteomyelitis in patients with Charcot’s neuroarthropathy. Nucl Med Commun. 2016;37(12):1253–9.

    Article  CAS  PubMed  Google Scholar 

  42. Demirev A, Weijers R, Geurts J, Mottaghy F, Walenkamp G, Brans B. Comparison of [18 F]FDG PET/CT and MRI in the diagnosis of active osteomyelitis. Skeletal Radiol. 2014;43(5):665–72.

    Article  PubMed  Google Scholar 

  43. Bassiouny RH, Gehan AG, Hemimy MY. MRI and Technetium-99m hexamethylpropylene amine oxime labeled leucocyte scintigraphy in the diagnosis and differentiation between acute osteomyelitis and neuroarthropathy in the diabetic foot. Med J Cairo Univ. 2020;88(62):495–504.

    Google Scholar 

  44. Llewellyno A, Jones-Dietteo J, Krafto J, Holton C, Harden M, Simmondso M. Imaging tests for the detection of osteomyelitis: A systematic review. Health Technol Assess. NIHR Journals Library 2019;23(61):1–128.

  45. Kapoor A, Page S, LaValley M, Gale DR, Felson DT. Magnetic resonance imaging for diagnosing foot osteomyelitis: A meta-analysis. Arch Intern Med. American Medical Association 2007;167:125–32.

  46. Layne KA, Dargan PI, Archer JRH, Wood DM. Gadolinium deposition and the potential for toxicological sequelae – A literature review of issues surrounding gadolinium-based contrast agents. Br J Clin Pharmacol. 2018;84(11):2522–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Administration UF and D. FDA Drug Safety Communication: New warnings for using gadolinium-based contrast agents in patients with kidney dysfunction. Inf Gadolinium-Based Contrast Agents. 2010. [cited 2020 Aug 2] Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-warnings-using-gadolinium-based-contrast-agents-patients-kidney.

  48. Young LK, Matthew SZ, Houston JG. Absence of potential gadolinium toxicity symptoms following 22,897 gadoteric acid (Dotarem®) examinations, including 3,209 performed on renally insufficient individuals. Eur Radiol. 2019;29(4):1922–30.

    Article  PubMed  Google Scholar 

  49. Noor S, Khan RU, Ahmad J. Understanding Diabetic Foot Infection and its Management. Diabetes Metab Syndr. 2017;11(2):149–56.

    Article  PubMed  Google Scholar 

  50. Schweitzer ME, Morrison WB. MR imaging of the diabetic foot. Radiol Clin N Am. 2004;42(1):61–71, vi.

    Article  PubMed  Google Scholar 

  51. Rennert R, Golinko M, Yan A, Flattau A, Tomic-Canic M, Brem H. Developing and evaluating outcomes of an evidence-based protocol for the treatment of osteomyelitis in Stage IV pressure ulcers: a literature and wound electronic medical record database review. Ostomy Wound Manage. 2009;55(3):42–53.

    PubMed  Google Scholar 

  52. Bhattacharya S, Mishra RK. Pressure ulcers: Current understanding and newer modalities of treatment. Indian J Plast Surg. 2015;48(1):4–16.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Boyko EJ, Monteiro-Soares M, Wheeler SGB. Peripheral arterial disease, foot ulcers, lower extremity amputations, and diabetes. In: Diabetes in America 3rd ed. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US); 2018 Aug. Chapter 20.

  54. Report NDS. National Diabetes Statistics Report, 2020. Natl Diabetes Stat Rep. 2020 [cited 2020 Aug 2] Available from: https://cdc.gov/diabetes/library/features/diabetes-stat-report.html.

  55. Dangman BC, Hoffer FA, Rand FF, O’Rourke EJ. Osteomyelitis in children: Gadolinium-enhanced MR imaging. Radiology. 1992;182(3):743–7.

    Article  CAS  PubMed  Google Scholar 

  56. Sax AJ, Halpern EJ, Zoga AC, Roedl JB, Belair JA, Morrison WB. Predicting osteomyelitis in patients whose initial MRI demonstrated bone marrow edema without corresponding T1 signal marrow replacement. Skeletal Radiol. 2020;49(8):1239–47.

    Article  PubMed  Google Scholar 

  57. Jang YH, Park S, Park YU, Kwack KS, Jeon SW, Lee HY. Multivariate analyses of MRI findings for predicting osteomyelitis of the foot in diabetic patients. Acta radiol. 2020;61(9):1205–12.

    Article  PubMed  Google Scholar 

  58. Noguerol TM, Alcalá AL, Beltrán LS, Cabrera MG, Cabrero JB, Vilanova JC. Advanced MR imaging techniques for differentiation of neuropathic arthropathy and osteomyelitis in the diabetic foot. Radiographics. 2017;37(4):1161–80.

    Article  Google Scholar 

  59. Donovan A, Schweitzer ME. Use of MR imaging in diagnosing diabetes-related pedal osteomyelitis. Radiographics. 2010;30(3):723–36.

    Article  PubMed  Google Scholar 

  60. Morrison WB, Schweitzer ME, Batte WG, Radack DP, Russel KM. Osteomyelitis of the foot: Relative importance of primary and secondary MR imaging signs. Radiology. 1998;207(3):625–32.

    Article  CAS  PubMed  Google Scholar 

  61. Leone A, Cassar-Pullicino VN, Semprini A, Tonetti L, Magarelli N, Colosimo C. Neuropathic osteoarthropathy with and without superimposed osteomyelitis in patients with a diabetic foot. Skeletal Radiol. 2016;45(6):735–54.

    Article  PubMed  Google Scholar 

  62. Ahmadi ME, Morrison WB, Carrino JA, Schweitzer ME, Raikin SM, Ledermann HP. Neuropathic arthropathy of the foot with and without superimposed osteomyelitis: MR imaging characteristics. Radiology. 2006;238(2):622–31.

    Article  PubMed  Google Scholar 

  63. Duryea D, Bernard S, Flemming D, Walker E, French C. Outcomes in diabetic foot ulcer patients with isolated T2 marrow signal abnormality in the underlying bone: should the diagnosis of “osteitis” be changed to “early osteomyelitis”? Skeletal Radiol. 2017;46(10):1327–33.

    Article  PubMed  Google Scholar 

  64. Dinh A, Bouchand F, Davido B, Duran C, Denys P, Lortat-Jacob A, et al. Management of established pressure ulcer infections in spinal cord injury patients. Med Maladies Infectieuses. 2019;49(1):9–16.

    Article  CAS  Google Scholar 

  65. Wong D, Holtom P, Spellberg B. Osteomyelitis Complicating Sacral Pressure Ulcers: Whether or Not to Treat with Antibiotic Therapy. Clin Infect Dis. 2019;68(2):338–42.

    Article  PubMed  Google Scholar 

  66. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJG, Armstrong DG. 2012 infectious diseases society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;52(12):e132–73.

    Article  Google Scholar 

  67. Pittet D, Wyssa B, Herter-Clavel C, Kursteiner K, Vaucher J, Lew PD. Outcome of diabetic foot infections treated conservatively: A retrospective cohort study with long-term follow-up. Arch Intern Med. 1999;159(8):851–6.

    Article  CAS  PubMed  Google Scholar 

  68. Bamberger DM, Daus GP, Gerding DN. Osteomyelitis in the feet of diabetic patients. Long-term results, prognostic factors, and the role of antimicrobial and surgical therapy. Am J Med. 1987;83(4):653–60.

    Article  CAS  PubMed  Google Scholar 

  69. Tan JS, Friedman NM, Hazelton-Miller C, Flanagan JP, File TM. Can aggressive treatment of diabetic foot infections reduce the need for above-ankle amputation? Clin Infect Dis. 1996;23(2):286–91.

    Article  CAS  PubMed  Google Scholar 

  70. Karchevsky M, Schweitzer ME, Morrison WB, Parellada JA. MRI Findings of Septic Arthritis and Associated Osteomyelitis in Adults. Am J Roentgenol. 2004;182(1):119–22.

    Article  Google Scholar 

  71. Ledermann HP, Morrison WB, Schweitzer ME. Pedal abscesses in patients suspected of having pedal osteomyelitis: Analysis with MR imaging. Radiology. 2002;224(3):649–55.

    Article  PubMed  Google Scholar 

  72. Chun CW, Jung JY, Baik JS, Jee WH, Kim SK, Shin SH. Detection of soft-tissue abscess: Comparison of diffusion-weighted imaging to contrast-enhanced MRI. J Magn Reson Imaging. 2018;47(1):60–8.

    Article  PubMed  Google Scholar 

  73. Umans H, Haramati N, Flusser G. The diagnostic role of gadolinium enhanced MRI in distinguishing between acute medullary bone infarct and osteomyelitis. Magn Reson Imaging. 2000;18(3):255–62.

    Article  CAS  PubMed  Google Scholar 

  74. Browne LP, Guillerman RP, Orth RC, Patel J, Mason EO, Kaplan SL. Community-acquired staphylococcal musculoskeletal infection in infants and young children: Necessity of contrast-enhanced MRI for the diagnosis of growth cartilage involvement. Am J Roentgenol. 2012;198(1):194–9.

    Article  Google Scholar 

  75. Pugmire BS. Role of MRI in the diagnosis and treatment of osteomyelitis in pediatric patients. World J Radiol. 2014;6(8):530.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Monu JUV, McManus CM, Ward WG, Haygood TM, Pope TL, Bohrer SP. Soft-tissue masses caused by long-standing foreign bodies in the extremities: MR imaging findings. Am J Roentgenol. 1995;165(2):395–7.

    Article  CAS  Google Scholar 

  77. Jarraya M, Hayashi D, De Villiers RV, Roemer FW, Murakami AM, Cossi A. Multimodality imaging of foreign bodies of the musculoskeletal system. Am J Roentgenol. 2014;203(1):W92-102.

    Article  Google Scholar 

  78. van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJG. PET and SPECT in Osteomyelitis and Prosthetic Bone and Joint Infections: A Systematic Review. Semin Nucl Med. 2010;40(1):3–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chase C. Labiste.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labiste, C.C., McElroy, E., Subhawong, T.K. et al. Systematic review: investigating the added diagnostic value of gadolinium contrast agents for osteomyelitis in the appendicular skeleton. Skeletal Radiol 51, 1285–1296 (2022). https://doi.org/10.1007/s00256-021-03915-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03915-4

Keywords

Navigation