Skip to main content

Advertisement

Log in

The functional relevance of diffusion tensor imaging in comparison to conventional MRI in patients with cervical compressive myelopathy

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the functional relevance of diffusion tensor imaging (DTI) metrics and conventional MRI (signal intensity change in T2, compression ratio) by measuring the correlation of these parameters with clinical outcome measured by the modified Japanese Orthopedic Association (mJOA) score.

Materials and methods

A total of 20 cervical myelopathy (CM) patients participated in this prospective cohort study. The severities of CM were assessed using the mJOA score. Conventional MRIs (T2-weighted images) measuring the signal changes of spinal cords and the degree of compression at the lesion level and DTI metrics [fractional anisotropy (FA), apparent diffusion coefficient (ADC)] at each lesion and below each lesion (C7/T1) level were acquired using a 3-T Achieva MRI. These parameters were correlated with the mJOA scores to determine the functional relevance.

Results

Ninety percent of CM patients showed signal changes and 30 % of patients noted a more than 40% canal compression ratio in conventional MRIs at the lesion level; however, these findings were not correlated with the mJOA score (p < 0.05). In contrast, FA values on DTI showed high sensitivity to CM (100%), which was well correlated with the mJOA score (p = 0.034, r = 0.475) below the lesion level (C7/T1).

Conclusions

This study showed a meaningful symptomatic correlation between mJOA scores and FA values below the lesion levels in CM patients. It could give us more understanding of the pathological changes in spinal cords matched with various clinical findings in CM patients than the results from conventional MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ducreux D, Fillard P, Facon D, et al. Diffusion tensor magnetic resonance imaging and fiber tracking in spinal cord lesions: Current and future indications. Neuroimaging Clin N Am. 2007;17(1):137–47.

    Article  PubMed  Google Scholar 

  2. Acharya S, Srivastava A, Virmani S, Tandon R. Resolution of physical signs and recovery in severe cervical spondylotic myelopathy after cervical laminoplasty. Spine (Phila Pa 1976). 2010;35(21):E1083–7.

    Article  Google Scholar 

  3. Yoo WK, Kim TH, Hai DM, et al. Correlation of magnetic resonance diffusion tensor imaging and clinical findings of cervical myelopathy. Spine J. 2013;13(8):867–76.

    Article  PubMed  Google Scholar 

  4. Cercignani M, Horsfield MA, Agosta F, Filippi M. Sensitivity-encoded diffusion tensor MR imaging of the cervical cord. AJNR Am J Neuroradiol. 2003;24(6):1254–6.

    PubMed  Google Scholar 

  5. Mamata H, Jolesz FA, Maier SE. Characterization of central nervous system structures by magnetic resonance diffusion anisotropy. Neurochem Int. 2004;45(4):553–60.

    Article  CAS  PubMed  Google Scholar 

  6. Rajasekaran S, Kanna RM, Shetty AP. Diffusion tensor imaging of the spinal cord and its clinical applications. J Bone Joint Surg Br. 2012;94(8):1024–31.

    Article  CAS  PubMed  Google Scholar 

  7. Song T, Chen WJ, Yang B, et al. Diffusion tensor imaging in the cervical spinal cord. Eur Spine J. 2011;20(3):422–8.

    Article  PubMed  Google Scholar 

  8. Rhee JM, Heflin JA, Hamasaki T, Freedman B. Prevalence of physical signs in cervical myelopathy: A prospective, controlled study. Spine (Phila Pa 1976). 2009;34(9):890–5.

    Article  Google Scholar 

  9. Clark CA, Werring DJ. Diffusion tensor imaging in spinal cord: Methods and applications—a review. NMR Biomed. 2002;15(7–8):578–86.

    Article  PubMed  Google Scholar 

  10. Baptiste DC, Fehlings MG. Pathophysiology of cervical myelopathy. Spine J. 2006;6(6 Suppl):190S–7S.

    Article  PubMed  Google Scholar 

  11. Fehlings MG, Skaf G. A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine (Phila Pa 1976). 1998;23(24):2730–7.

    Article  CAS  Google Scholar 

  12. Uda T, Takami T, Tsuyuguchi N, et al. Assessment of cervical spondylotic myelopathy using diffusion tensor magnetic resonance imaging parameter at 3.0 tesla. Spine (Phila Pa 1976). 2013;38(5):407–14.

    Article  Google Scholar 

  13. Xiangshui M, Xiangjun C, Xiaoming Z, et al. 3 T magnetic resonance diffusion tensor imaging and fibre tracking in cervical myelopathy. Clin Radiol. 2010;65(6):465–73.

    Article  CAS  PubMed  Google Scholar 

  14. Arvin B, Kalsi-Ryan S, Mercier D, Furlan JC, Massicotte EM, Fehlings MG. Preoperative magnetic resonance imaging is associated with baseline neurological status and can predict postoperative recovery in patients with cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2013;38(14):1170–6.

    Article  Google Scholar 

  15. Ono K, OH TK, Yamamoto T. Cervical myelopathy secondary to multiple spondylotic protrusion: A clinico-pathologic study. Spine (Phila Pa 1976). 1977;2:109–25.

    Article  Google Scholar 

  16. Mueller-Mang C, Law M, Mang T, Fruehwald-Pallamar J, Weber M, Thurnher MM. Diffusion tensor MR imaging (DTI) metrics in the cervical spinal cord in asymptomatic HIV-positive patients. Neuroradiology. 2011;53(8):585–92.

    Article  PubMed  Google Scholar 

  17. DeBoy CA, Zhang J, Dike S, et al. High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord. Brain. 2007;130(Pt 8):2199–210.

    Article  PubMed  Google Scholar 

  18. Gao SJ, Yuan X, Jiang XY, et al. Correlation study of 3T-MR-DTI measurements and clinical symptoms of cervical spondylotic myelopathy. Eur J Radiol. 2013;82(11):1940–5.

    Article  PubMed  Google Scholar 

  19. Budzik JF, Balbi V, Le Thuc V, Duhamel A, Assaker R, Cotten A. Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol. 2011;21(2):426–33.

    Article  PubMed  Google Scholar 

  20. Fehlings MG, Wilson JR, Kopjar B, et al. Efficacy and safety of surgical decompression in patients with cervical spondylotic myelopathy: Results of the AOSpine North America prospective multi-center study. J Bone Joint Surg Am. 2013;95(18):1651–8.

    Article  PubMed  Google Scholar 

  21. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  22. Dorenbeck U, Schreyer AG, Schlaier J, Held P, Feuerbach S, Seitz J. Degenerative diseases of the cervical spine: Comparison of a multiecho data image combination sequence with a magnetisation transfer saturation pulse and cervical myelography and CT. Neuroradiology. 2004;46(4):306–9.

    Article  CAS  PubMed  Google Scholar 

  23. Yousem DM, Atlas SW, Hackney DB. Cervical spine disk herniation: Comparison of CT and 3DFT gradient echo MR scans. J Comput Assist Tomogr. 1992;16(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  24. Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH. Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology. 1999;52(8):1626–32.

    Article  CAS  PubMed  Google Scholar 

  25. Johansen-Berg H, Rushworth MF. Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci. 2009;32:75–94.

    Article  CAS  PubMed  Google Scholar 

  26. Facon D, Ozanne A, Fillard P, Lepeintre JF, Tournoux-Facon C, Ducreux D. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol. 2005;26(6):1587–94.

    PubMed  Google Scholar 

  27. Ellingson BM, Ulmer JL, Kurpad SN, Schmit BD. Diffusion tensor MR imaging in chronic spinal cord injury. AJNR Am J Neuroradiol. 2008;29(10):1976–82.

    Article  CAS  PubMed  Google Scholar 

  28. Ellingson BM, Kurpad SN, Schmit BD. Functional correlates of diffusion tensor imaging in spinal cord injury. Biomed Sci Instrum. 2008;44:28–33.

    PubMed  Google Scholar 

  29. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage. 2003;20(3):1714–22.

    Article  PubMed  Google Scholar 

  30. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002;17(3):1429–36.

    Article  PubMed  Google Scholar 

  31. Budde MD, Xie M, Cross AH, Song SK. Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: A quantitative pixelwise analysis. J Neurosci. 2009;29(9):2805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ellingson BM, Salamon N, Grinstead JW, Holly LT. Diffusion tensor imaging predicts functional impairment in mild-to-moderate cervical spondylotic myelopathy. Spine J. 2014;14(11):2589–97.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ying J, Zhou X, Zhu M, et al. The contribution of diffusion tensor imaging to quantitative assessment on multilevel cervical Spondylotic myelopathy. Eur Neurol. 2016;75(1–2):67–74.

    Article  PubMed  Google Scholar 

  34. Lindberg PG, Sanchez K, Ozcan F, et al. Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI. Eur Radiol. 2016;26(3):733–42.

    Article  PubMed  Google Scholar 

  35. Harsan LA, Poulet P, Guignard B, et al. Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging. J Neurosci Res. 2006;83(3):392–402.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Woo Kim.

Ethics declarations

Conflict of interest

This study was supported by Hallym University Research Fund (HRF-01-2010-13) and the National Research Foundation of Korea (2015R1D1A1A01061562, 2013R1A1A2012562).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YM., Yoo, WK., Yoo, J.H. et al. The functional relevance of diffusion tensor imaging in comparison to conventional MRI in patients with cervical compressive myelopathy. Skeletal Radiol 46, 1477–1486 (2017). https://doi.org/10.1007/s00256-017-2713-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2713-7

Keywords

Navigation