Skip to main content

Advertisement

Log in

Quantitative assessment of the supraspinatus tendon on MRI using T2/T2* mapping and shear-wave ultrasound elastography: a pilot study

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine whether there is an association between T2/T2* mapping and supraspinatus tendon mechanical properties as assessed by shear-wave ultrasound elastography (SWE).

Materials and methods

This HIPAA-compliant prospective pilot study received approval from our hospital’s institutional review board. Eight patients (3 males/5 females; age range 44–72 years) and nine shoulders underwent conventional shoulder MRI, T2/T2* mapping on a 3-T scanner, and SWE. Two musculoskeletal radiologists reviewed the MRI examinations in consensus for evidence of supraspinatus tendon pathology, with tear size measured for full-thickness tears. T2/T2* values and ultrasound shear-wave velocities (SWV) were calculated in three corresponding equidistant regions of interest (ROIs) within the insertional 1–2 cm of the supraspinatus tendon (medial, middle, lateral). Pearson correlation coefficients between T2/T2* values and SWV, as well as among T2, T2*, SWV and tear size, were calculated.

Results

There was a significant negative correlation between T2* and SWV in the lateral ROI (r = −0.86, p = 0.013) and overall mean ROI (r = −0.90, p = 0.006). There was significant positive correlation between T2 and measures of tear size in the lateral and mean ROIs (r range 0.71–0.77, p range 0.016–0.034). There was significant negative correlation between SWV and tear size in the middle and mean ROIs (r range −0.79–-0.68, p range 0.011–0.046).

Conclusion

Our pilot study demonstrated a potential relationship between T2* values and shear wave velocity values in the supraspinatus tendon, a finding that could lead to an improved, more quantitative evaluation of the rotator cuff tendons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mather RC, Koenig L, Acevedo D, Dall TM, Gallo P, Romeo A, et al. The societal and economic value of rotator cuff repair. J Bone Joint Surg Am. 2013;95(22):1993–2000.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chung SW, Kim JY, Kim MH, Kim SH, Oh JH. Arthroscopic repair of massive rotator cuff tears: outcome and analysis of factors associated with healing failure or poor postoperative function. Am J Sports Med. 2013;41(7):1674–83.

    Article  PubMed  Google Scholar 

  3. Gladstone JN, Bishop JY, Lo IKY, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med. 2007;35(5):719–28.

    Article  PubMed  Google Scholar 

  4. Goutallier D, Postel J-M, Gleyze P, Leguilloux P, Van Driessche S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elbow Surg. 2003;12(6):550–4.

    Article  PubMed  Google Scholar 

  5. Wu XL, Briggs L, Murrell GAC. Intraoperative determinants of rotator cuff repair integrity: an analysis of 500 consecutive repairs. Am J Sports Med. 2012;40(12):2771–6.

    Article  PubMed  Google Scholar 

  6. Mellado JM, Calmet J, Olona M, Ballabriga J, Camins A, Pérez del Palomar L, et al. MR assessment of the repaired rotator cuff: prevalence, size, location, and clinical relevance of tendon rerupture. Eur Radiol. 2006;16(10):2186–96.

    Article  CAS  PubMed  Google Scholar 

  7. Meyer DC, Wieser K, Farshad M, Gerber C. Retraction of supraspinatus muscle and tendon as predictors of success of rotator cuff repair. Am J Sports Med. 2012;40(10):2242–7.

    Article  PubMed  Google Scholar 

  8. Gilot GJ, Attia AK, Alvarez AM. Arthroscopic repair of rotator cuff tears using extracellular matrix graft. Arthrosc Tech. 2014;3(4):e487–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wlk MV, Abdelkafy A, Hexel M, Krasny C, Aigner N, Meizer R, et al. Biomechanical evaluation of suture-tendon interface and tissue holding of three suture configurations in torn and degenerated versus intact human rotator cuffs. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2015;23(2):386–92.

    Article  Google Scholar 

  10. Chung SW, Kim JY, Yoon JP, Lyu SH, Rhee SM, Oh SB. Arthroscopic repair of partial-thickness and small full-thickness rotator cuff tears: tendon quality as a prognostic factor for repair integrity. Am J Sports Med. 2015;43(3):588–96.

    Article  PubMed  Google Scholar 

  11. Cummins CA, Murrell GAC. Mode of failure for rotator cuff repair with suture anchors identified at revision surgery. J Shoulder Elbow Surg. 2003;12(2):128–33.

    Article  PubMed  Google Scholar 

  12. Nho SJ, Brown BS, Lyman S, Adler RS, Altchek DW, MacGillivray JD. Prospective analysis of arthroscopic rotator cuff repair: prognostic factors affecting clinical and ultrasound outcome. J Shoulder Elbow Surg. 2009;18(1):13–20.

    Article  PubMed  Google Scholar 

  13. Chillemi C, Petrozza V, Garro L, Sardella B, Diotallevi R, Ferrara A, et al. Rotator cuff re-tear or non-healing: histopathological aspects and predictive factors. Knee Surg Sports Traumatol Arthrosc. 2011;19(9):1588–96.

    Article  CAS  PubMed  Google Scholar 

  14. Balich SM, Sheley RC, Brown TR, Sauser DD, Quinn SF. MR imaging of the rotator cuff tendon: interobserver agreement and analysis of interpretive errors. Radiology. 1997;204(1):191–4.

    Article  CAS  PubMed  Google Scholar 

  15. Sein ML, Walton J, Linklater J, Harris C, Dugal T, Appleyard R, et al. Reliability of MRI assessment of supraspinatus tendinopathy. Br J Sports Med. 2007;41(8), e9.

    Article  PubMed  Google Scholar 

  16. Le Corroller T, Cohen M, Aswad R, Pauly V, Champsaur P. Sonography of the painful shoulder: role of the operator’s experience. Skelet Radiol. 2008;37(11):979–86.

    Article  Google Scholar 

  17. Nightingale K. Acoustic Radiation Force Impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2011;7(4):328–39.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Martin JA, Biedrzycki AH, Lee KS, DeWall RJ, Brounts SH, Murphy WL, et al. In vivo measures of shear wave speed as a predictor of tendon elasticity and strength. Ultrasound Med Biol. 2015;41(10):2722–30.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ooi CC, Malliaras P, Schneider ME, Connell DA. “Soft, hard, or just right?” Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skelet Radiol. 2014;43(1):1–12.

    Article  CAS  Google Scholar 

  20. Tudisco C, Bisicchia S, Stefanini M, Antonicoli M, Masala S, Simonetti G. Tendon quality in small unilateral supraspinatus tendon tears. Real-time sonoelastography correlates with clinical findings. Knee Surg Sports Traumatol Arthrosc. 2015;23(2):393–8.

    Article  PubMed  Google Scholar 

  21. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012;85(1019):1435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liess C, Lüsse S, Karger N, Heller M, Glüer C-C. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil. 2002;10(12):907–13.

    Article  CAS  PubMed  Google Scholar 

  23. Nissi MJ, Rieppo J, Töyräs J, Laasanen MS, Kiviranta I, Jurvelin JS, et al. T(2) relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage. Osteoarthr Cartil. 2006;14(12):1265–71.

    Article  CAS  PubMed  Google Scholar 

  24. Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartil. 2015;23(10):1639–53.

    Article  CAS  PubMed  Google Scholar 

  25. Juras V, Apprich S, Szomolanyi P, Bieri O, Deligianni X, Trattnig S. Bi-exponential T2 analysis of healthy and diseased Achilles tendons: an in vivo preliminary magnetic resonance study and correlation with clinical score. Eur Radiol. 2013;23(10):2814–22.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Juras V, Zbyn S, Pressl C, Valkovic L, Szomolanyi P, Frollo I, et al. Regional variations of T2* in healthy and pathologic achilles tendon in vivo at 7 Tesla: preliminary results. Magn Reson Med. 2012;68(5):1607–13.

    Article  PubMed  Google Scholar 

  27. Anz AW, Lucas EP, Fitzcharles EK, Surowiec RK, Millett PJ, Ho CP. MRI T2 mapping of the asymptomatic supraspinatus tendon by age and imaging plane using clinically relevant subregions. Eur J Radiol. 2014;83(5):801–5.

    Article  PubMed  Google Scholar 

  28. Ganal E, Ho CP, Wilson KJ, Surowiec RK, Smith WS, Dornan GJ, et al. Quantitative MRI characterization of arthroscopically verified supraspinatus pathology: comparison of tendon tears, tendinosis and asymptomatic supraspinatus tendons with T2 mapping. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2015.

  29. Guney A, Vatansever F, Karaman I, Kafadar IH, Oner M, Turk CY. Biomechanical properties of Achilles tendon in diabetic vs. non-diabetic patients. Exp Clin Endocrinol Diabetes. 2015;123(7):428–32.

    Article  CAS  PubMed  Google Scholar 

  30. Marturano JE, Arena JD, Schiller ZA, Georgakoudi I, Kuo CK. Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc Natl Acad Sci USA. 2013;110(16):6370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vesentini S, Redaelli A, Gautieri A. Nanomechanics of collagen microfibrils. Muscles Ligaments Tendons J. 2013;3(1):23–34.

    PubMed  PubMed Central  Google Scholar 

  32. Jacobson JA. Shoulder US: anatomy, technique, and scanning pitfalls. Radiology. 2011;260(1):6–16.

    Article  PubMed  Google Scholar 

  33. Lattanzio P-J, Marshall KW, Damyanovich AZ, Peemoeller H. Macromolecule and water magnetization exchange modeling in articular cartilage. Magn Reson Med. 2000;44(6):840–51.

    Article  CAS  PubMed  Google Scholar 

  34. Gatehouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol. 2003;58(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  35. Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed. 2001;14(2):57–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soterios Gyftopoulos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclosures

Konstantin Krepkin: None

Mary Bruno: None

José Raya: None

Soterios Gyftopoulos: Funding from Toshiba America Medical Systems/RSNA Research Seed Grant, Career Development, #RSD1311

Additional information

IRB statement

This HIPAA-compliant study received approval from our hospital’s institutional review board and waiver of consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krepkin, K., Bruno, M., Raya, J.G. et al. Quantitative assessment of the supraspinatus tendon on MRI using T2/T2* mapping and shear-wave ultrasound elastography: a pilot study. Skeletal Radiol 46, 191–199 (2017). https://doi.org/10.1007/s00256-016-2534-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-016-2534-0

Keywords

Navigation