Skip to main content

Advertisement

Log in

T2* mapping for articular cartilage assessment: principles, current applications, and future prospects

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, accurate and reliable assessment of the cartilage status is critical. Biochemically sensitive MRI techniques can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tools for the diagnosis and follow-up of cartilage abnormalities. T2* mapping could be a good alternative because it would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution three-dimensional cartilage evaluation—without the need for contrast media administration or special hardware. Several in vitro and in vivo studies, which have elaborated on the potential of cartilage T2* assessment in various cartilage disease patterns and grades of degeneration, have been reported. However, much remains to be understood and certain unresolved questions have become apparent with these studies that are crucial to the further application of this technique. This review summarizes the principles of the technique and current applications of T2* mapping for articular cartilage assessment. Limitations of recent studies are discussed and the potential implications for patient care are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Altman RD. The syndrome of osteoarthritis. J Rheumatol. 1997;24(4):766–7.

    CAS  PubMed  Google Scholar 

  2. Burstein D, Bashir A, Gray ML. MRI techniques in early stages of cartilage disease. Invest Radiol. 2000;35(10):622–38.

    Article  CAS  PubMed  Google Scholar 

  3. Damadian R. Tumor detection by nuclear magnetic resonance. Science. 1971;171(3976):1151–3.

    Article  CAS  PubMed  Google Scholar 

  4. Recht MP, Goodwin DW, Winalski CS, White LM. MRI of articular cartilage: revisiting current status and future directions. AJR Am J Roentgenol. 2005;185(4):899–914.

    Article  PubMed  Google Scholar 

  5. Dijkgraaf LC, de Bont LG, Boering G, Liem RS. The structure, biochemistry, and metabolism of osteoarthritic cartilage: a review of the literature. J Oral Maxillofac Surg. 1995;53(10):1182–92.

    Article  CAS  PubMed  Google Scholar 

  6. Link TM, Stahl R, Woertler K. Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol. 2007;17(5):1135–46.

    Article  PubMed  Google Scholar 

  7. Burstein D, Gray M, Mosher T, Dardzinski B. Measures of molecular composition and structure in osteoarthritis. Radiol Clin N Am. 2009;47(4):675–86.

    Article  PubMed  Google Scholar 

  8. Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol. 2012;41(3):287–92.

    Article  PubMed  Google Scholar 

  9. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.

    Article  PubMed  Google Scholar 

  10. Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006;19(7):781–821.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin N Am. 2005;43(4):641–53. vii.

    Article  PubMed  Google Scholar 

  12. Mamisch TC, Menzel MI, Welsch GH, Bittersohl B, Salomonowitz E, Szomolanyi P, et al. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 tesla–preliminary results. Eur J Radiol. 2008;65(1):72–9.

    Article  PubMed  Google Scholar 

  13. Shapiro EM, Borthakur A, Gougoutas A, Reddy R. 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med. 2002;47(2):284–91.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Binks DA, Hodgson RJ, Ries ME, Foster RJ, Smye SW, McGonagle D, et al. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol. 2013;86(1023):20120163.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chan DD, Neu CP. Probing articular cartilage damage and disease by quantitative magnetic resonance imaging. J R Soc Interface. 2013;10(78):20120608.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Choi JA, Gold GE. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin North Am. 2011;19(2):249–82.

    Article  Google Scholar 

  17. Mosher TJ, Walker EA, Petscavage-Thomas J, Guermazi A. Osteoarthritis year 2013 in review: imaging. Osteoarthritis Cartilage2013;21(10):1425–35.

    Article  CAS  PubMed  Google Scholar 

  18. Shapiro L, Harish M, Hargreaves B, Staroswiecki E, Gold G. Advances in musculoskeletal MRI: technical considerations. J Magn Reson Imaging. 2012;36(4):775–87.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Williams A, Qian Y, Chu CR. UTE-T2* mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthritis Cartilage. 2011;19(1):84–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bittersohl B, Miese FR, Hosalkar HS, Mamisch TC, Antoch G, Krauspe R, et al. T2* mapping of acetabular and femoral hip joint cartilage at 3 T: a prospective controlled study. Invest Radiol. 2012;47(7):392–7.

    Article  CAS  PubMed  Google Scholar 

  21. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.

    PubMed  Google Scholar 

  22. Dijkgraaf LC, de Bont LG, Boering G, Liem RS. Normal cartilage structure, biochemistry, and metabolism: a review of the literature. J Oral Maxillofac Surg. 1995;53(8):924–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lohmander S. Proteoglycans of joint cartilage. Structure, function, turnover and role as markers of joint disease. Baillieres Clin Rheumatol. 1988;2(1):37–62.

    Article  CAS  PubMed  Google Scholar 

  24. Lu XL, Mow VC. Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exerc. 2008;40(2):193–9.

    Article  PubMed  Google Scholar 

  25. Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage I. Chemical composition. Ann Rheum Dis. 1977;36(2):121–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gomez S, Toffanin R, Bernstorff S, Romanello M, Amenitsch H, Rappolt M, et al. Collagen fibrils are differently organized in weight-bearing and not-weight-bearing regions of pig articular cartilage. J Exp Zool. 2000;287(5):346–52.

    Article  CAS  PubMed  Google Scholar 

  27. Moger CJ, Barrett R, Bleuet P, Bradley DA, Ellis RE, Green EM, et al. Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering (SAXS). Osteoarthritis Cartilage. 2007;15(6):682–7.

    Article  CAS  PubMed  Google Scholar 

  28. Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 1971;53(3):523–37.

    CAS  PubMed  Google Scholar 

  29. Maroudas A, Venn M. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis. 1977;36(5):399–406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Haacke E, Brown R, Thompson M, Venkatesan R. MRI physical principles and sequence design. New York: Wiley-Liss; 1999.

    Google Scholar 

  31. Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29(5):1433–49.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Carneiro AAO, Vilela GR, Araujo DB, Baffa O. MRI relaxometry: methods and applications. Braz J Phys. 2006;36:9–15.

    Article  Google Scholar 

  33. Lusse S, Claassen H, Gehrke T, Hassenpflug J, Schunke M, Heller M, et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging. 2000;18(4):423–30.

    Article  CAS  PubMed  Google Scholar 

  34. Nieminen MT, Rieppo J, Toyras J, Hakumaki JM, Silvennoinen J, Hyttinen MM, et al. T2 Relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med. 2001;46(3):487–93.

    Article  CAS  PubMed  Google Scholar 

  35. Reiter DA, Lin PC, Fishbein KW, Spencer RG. Multicomponent T2 relaxation analysis in cartilage. Magn Res Med. 2009;61(4):803–9.

    Article  Google Scholar 

  36. Marik W, Apprich S, Welsch GH, Mamisch TC, Trattnig S. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2-mapping at 3 T MRI: a feasibility study. Eur J Radiol. 2012;81(5):923–7.

    Article  CAS  PubMed  Google Scholar 

  37. Miese FR, Zilkens C, Holstein A, Bittersohl B, Kropil P, Mamisch TC, et al. Assessment of early cartilage degeneration after slipped capital femoral epiphysis using T2 and T2* mapping. Acta Radiol. 2011;52(1):106–110.

    PubMed  Google Scholar 

  38. Quaia E, Toffanin R, Guglielmi G, Ukmar M, Rossi A, Martinelli B, et al. Fast T2 mapping of the patellar articular cartilage with gradient and spin-echo magnetic resonance imaging at 1.5 T: validation and initial clinical experience in patients with osteoarthritis. Skeletal Radiol. 2008;37(6):511–7.

    Article  PubMed  Google Scholar 

  39. Bittersohl B, Miese FR, Hosalkar HS, Herten M, Antoch G, Krauspe R, et al. T2* mapping of hip joint cartilage in various histological grades of degeneration. Osteoarthritis Cartilage. 2012;20(7):653–60.

    Article  CAS  PubMed  Google Scholar 

  40. Newbould RD, Miller SR, Toms LD, Swann P, Tielbeek JA, Gold GE, et al. T2* measurement of the knee articular cartilage in osteoarthritis at 3 T. J Magn Res Imaging. 2012;35(6):1422–9.

    Article  Google Scholar 

  41. Williams A, Qian Y, Bear D, Chu CR. Assessing degeneration of human articular cartilage with ultra-short echo time (UTE) T2* mapping. Osteoarthritis Cartilage. 2010;18(4):539–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004;22(5):673–82.

    Article  PubMed  Google Scholar 

  43. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.

    Article  PubMed  Google Scholar 

  44. Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology. 2000;214(1):259–66.

    Article  CAS  PubMed  Google Scholar 

  45. Stahl R, Blumenkrantz G, Carballido-Gamio J, Zhao S, Munoz T, Hellio Le Graverand-Gastineau MP, et al. MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up. Osteoarthritis and cartilage / OARS, Osteoarthritis Research. Society. 2007;15(11):1225–34.

    CAS  Google Scholar 

  46. Gatehouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol. 2003;58(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  47. Lattanzio PJ, Marshall KW, Damyanovich AZ, Peemoeller H. Macromolecule and water magnetization exchange modeling in articular cartilage. Magnetic Reson Med. 2000;44(6):840–51.

    Article  CAS  Google Scholar 

  48. Maier CF, Tan SG, Hariharan H, Potter HG. T2 Quantitation of articular cartilage at 1.5 T. J Magn Res Imaging. 2003;17(3):358–64.

    Article  Google Scholar 

  49. Bittersohl B, Miese FR, Dekkers C, Senyurt H, Kircher J, Wittsack HJ, et al. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of glenohumeral cartilage in asymptomatic volunteers at 3 T. Eur Radiol. 2013;23(5):1367–74.

    Article  PubMed  Google Scholar 

  50. Bittersohl B, Hosalkar HS, Hughes T, Kim YJ, Werlen S, Siebenrock KA, et al. Feasibility of T2* mapping for the evaluation of hip joint cartilage at 1.5 T using a three-dimensional (3D), gradient-echo (GRE) sequence: a prospective study. Magn Reson Med. 2009;62(4):896–901.

    Article  PubMed  Google Scholar 

  51. Apprich S, Mamisch TC, Welsch GH, Bonel H, Siebenrock KA, Kim YJ, et al. Evaluation of articular cartilage in patients with femoroacetabular impingement (FAI) using T2* mapping at different time points at 3.0 tesla MRI: a feasibility study. Skeletal Radiol. 2012;41(8):987–95.

    Article  CAS  PubMed  Google Scholar 

  52. Bittersohl B, Hosalkar HS, Sondern M, Miese FR, Antoch G, Krauspe R, et al. Spectrum of T2* values in knee joint cartilage at 3 T: a cross-sectional analysis in asymptomatic young adult volunteers. Skeletal Radiol. 2014;43(4):443–52.

    Article  PubMed  Google Scholar 

  53. Welsch GH, Mamisch TC, Hughes T, Zilkens C, Quirbach S, Scheffler K, et al. In vivo biochemical 7.0 tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol. 2008;43(9):619–26.

    Article  PubMed  Google Scholar 

  54. Welsch GH, Trattnig S, Hughes T, Quirbach S, Olk A, Blanke M, et al. T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI. Eur Radiol. 2010;20(6):1515–23.

    Article  PubMed  Google Scholar 

  55. Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging. 2008;26(9):1215–20.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Krause FG, Klammer G, Benneker LM, Werlen S, Mamisch TC, Weber M. Biochemical T2* MR quantification of ankle arthrosis in pes cavovarus. J Orthop Res. 2010;28(12):1562–8.

    Article  CAS  PubMed  Google Scholar 

  57. Buchbender C, Scherer A, Kropil P, Korbl B, Quentin M, Reichelt D, et al. Cartilage quality in rheumatoid arthritis: comparison of T2* mapping, native T1 mapping, dGEMRIC, DeltaR1 and value of pre-contrast imaging. Skeletal Radiol. 2012;41(6):685–92.

    Article  PubMed  Google Scholar 

  58. Froimson MI, Ratcliffe A, Gardner TR, Mow VC. Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation. Osteoarthritis Cartilage. 1997;5(6):377–86.

    Article  CAS  PubMed  Google Scholar 

  59. Watrin-Pinzano A, Ruaud JP, Cheli Y, Gonord P, Grossin L, Bettembourg-Brault I, et al. Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 mapping. MAGMA. 2004;17(3–6):219–28.

    Article  CAS  PubMed  Google Scholar 

  60. White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology. 2006;241(2):407–14.

    Article  PubMed  Google Scholar 

  61. Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle. 1994;15(7):349–53.

    Article  CAS  PubMed  Google Scholar 

  62. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham 3rd CO, et al. 2010 Rheumatoid arthritis classification criteria: an American college of rheumatology/European league against rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81.

    Article  PubMed  Google Scholar 

  63. Xia Y. Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol. 2000;35(10):602–21.

    Article  CAS  PubMed  Google Scholar 

  64. Shiomi T, Nishii T, Myoui A, Yoshikawa H, Sugano N. Influence of knee positions on T2, T*2, and dGEMRIC mapping in porcine knee cartilage. Magn Reson Med. 2010;64(3):707–14.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Bittersohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesper, T., Hosalkar, H.S., Bittersohl, D. et al. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects. Skeletal Radiol 43, 1429–1445 (2014). https://doi.org/10.1007/s00256-014-1852-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-014-1852-3

Keywords

Navigation