Skip to main content

Advertisement

Log in

3-T MRI assessment of osteophyte formation in patients with unilateral anterior cruciate ligament injury and reconstruction

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To define the number and distribution of osteophytes (OPs) in bilateral knee MRI (magnetic resonance imaging) of patients with unilateral anterior cruciate ligament (ACL) rupture.

Materials and methods

Bilateral knee MRIs of 20 patients with unilateral ACL rupture and reconstruction were retrospectively analyzed for OPs. OPs were graded following the KOSS (knee OA scoring system) classification and their compartmental distribution was assessed following the WORMS (Whole-Organ Magnetic Resonance Imaging Score) classification.

Results

All examined knees revealed OPs. Knees with ACL rupture showed significant (p < 0.001) higher total numbers of OPs (mean 11.6; SD ± 4.4) than knees with intact ACL (mean 5.1; SD ± 2.3). Knees with ACL rupture showed increased OP formation in all knee compartments with predominance of marginal OPs in the lateral femorotibial compartment especially on the tibia.

Conclusions

Our results show that after knee injury with ACL rupture and reconstruction, all knee compartments were involved in post-traumatic increase of OP formation. The most affected compartment was the lateral femorotibial compartment on the tibial side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthritis Cartilage. 2007;15:237–44.

    Article  PubMed  Google Scholar 

  2. Blaney Davidson EN, Vitters EL, van Beuningen HM, van de Loo FAJ, van den Berg WB, van der Kraan PM. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor ß-induced osteophytes. Arthritis Rheum. 2007;56:4065–73.

    Article  PubMed  CAS  Google Scholar 

  3. Suri S, Gill SE, Massena de Camin S, Wilson D, McWilliams DF, Walsh DA. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis. 2007;66:1423–8.

    Article  PubMed  Google Scholar 

  4. Blaney Davidson EN, Vitters EL, van der Kraan PM, van den Berg WB. Expression of transforming growth factor-ß (TGFß) and the TGFß signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis. 2006;65:1414–21.

    Article  PubMed  CAS  Google Scholar 

  5. Orlandi A, Oliva F, Taurisano G, et al. Transglutaminase-2 differently regulates cartilage destruction and osteophyte formation in a surgical model of osteoarthritis. Amino Acids. 2009;36:775–63.

    Article  Google Scholar 

  6. Singh S, Jones BJ, Crawford R, XIAO Y. Characterization of a mesenchymal-like stem cell population from osteophyte tissue. Stem Cells Dev. 2008;17:245–54.

    Article  PubMed  CAS  Google Scholar 

  7. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.

    Article  PubMed  CAS  Google Scholar 

  8. Schiphof D, de Klerk BM, Koes BW, Bierma-Zeinstra S. Good reliability, questionable validity of 25 different classification criteria of knee osteoarthritis: a systematical appraisal. J Clin Epidem. 2008;61:1205–15.

    Article  Google Scholar 

  9. Eckstein F, Mosher T, Hunter D. Imaging of knee osteoarthritis: data beyond the beauty. Curr Opin Rheumatol. 2007;19:435–43.

    Article  PubMed  Google Scholar 

  10. Crema MD, Roemer FW, Marra MD, et al. Articular cartilage in the knee: current MR imaging techniques and application in clinical practice and research. Radiographics. 2001;31:37–62.

    Article  Google Scholar 

  11. Guermazi A, Hunter DJ, Roemer FW. Plain radiography and magnetic resonance imaging diagnostics in osteoarthritis validated staging and scoring. J Bone Joint Surg Am. 2009;1:54–62.

    Article  Google Scholar 

  12. Kornaat PR, Ceulemans RYT, Kroon HM, et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS) – inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 2005;34:95–102.

    Article  PubMed  Google Scholar 

  13. Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12:177–90.

    Article  PubMed  CAS  Google Scholar 

  14. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston-Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67:206–11.

    Article  PubMed  CAS  Google Scholar 

  15. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries. Am J Sports Med. 2007;10:1756–69.

    Article  Google Scholar 

  16. Kindynis P, Haller J, Kang HS, et al. Osteophytosis of the knee: anatomic, radiologic, and pathologic investigation. Radiology. 1990;174:841–6.

    PubMed  CAS  Google Scholar 

  17. Roos EM. Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol. 2005;17:195–200.

    Article  PubMed  Google Scholar 

  18. Abrahim-Zadeh R, Yu JS, Resnick D. Central (interior) osteophytes of the distal femur. Imaging and pathologic findings. Invest Radiol. 1994;29:1001–5.

    Article  PubMed  CAS  Google Scholar 

  19. McCauley TR, Kornaat PR, Jee WH. Central osteophytes in the knee: prevalence and association with cartilage defects on MR Imaging. AJR. 2001;176:359–64.

    PubMed  CAS  Google Scholar 

  20. Koster IM, Oei EHG, Hensen JJ et al. Predictive factors for new onset or progression of knee osteoarthritis one year after trauma: MRI follow-up in general practice 2011;21: 1509–1516.

  21. Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20:739–44.

    Article  PubMed  Google Scholar 

  22. Swärd P, Kostogiannis I, Neuman P, von Porat A, Boegård T, Roos H. Differences in the radiological characteristics between post-traumatic and non-traumatic knee osteoarthritis. Scand J Med Sci Sports. 2010;20:731–9.

    Article  PubMed  Google Scholar 

  23. Buckland-Wright JC, Lynch JA, Dave B. Early radiographic features in patients with anterior cruciate ligament rupture. Ann Rheum Dis. 2000;59:641–6.

    Article  PubMed  CAS  Google Scholar 

  24. Hernborg J, Nilsson BE. Age and sex incidence of osteophytes in the knee joint. Acta Orthop Scand. 1973;44:66–8.

    Article  PubMed  CAS  Google Scholar 

  25. Dillon CF, Rasch EK, Gu Q, Hirsch R. Prevalence of knee osteoarthritis in the United States: arthritis data from the Third National Health and Nutrition Examination Survey 1991–94. J Rheumatol. 2006;33:2271–9.

    PubMed  Google Scholar 

  26. Krampla W, Roesel M, Svoboda K, Nachbagauer A, Gschwantler M, Hruby W. MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament? Eur Radiol. 2009;19:1519–28.

    Article  PubMed  CAS  Google Scholar 

  27. Lohmander LS, Östenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;10:3145–52.

    Article  Google Scholar 

  28. Von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004;63:269–73.

    Article  Google Scholar 

  29. Felson DT, Nevitt MC, Zhang Y, et al. High prevalence of lateral knee osteoarthritis in Beijing Chinese compared with Framingham Caucasian subjects. Arthritis Rheum. 2002;46:1217–22.

    Article  PubMed  Google Scholar 

  30. Huétink K, Nelissen RGHH, Watt I, van Erkel AR, Bloem JL. Localized development of knee osteoarthritis can be predicted from MR imaging findings a decade earlier. Radiology. 2010;256:536–46.

    Article  PubMed  Google Scholar 

  31. Speer KP, Spritzer CE, Bassett III FH, Feagin Jr JA, Garrett Jr WE. Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med. 1992;20:382–9.

    Article  PubMed  CAS  Google Scholar 

  32. Spindler KP, Schils JP, Bergfeld JA, et al. Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med. 1993;21:551–7.

    Article  PubMed  CAS  Google Scholar 

  33. Stein LN, Fischer DA, Fritts HM, Quick DC. Occult osseous lesions associated with anterior cruciate ligament tears. Clin Orthop Relat Res. 1995;313:187–93.

    PubMed  Google Scholar 

  34. Tiderius CJ, Olsson LE, Nyquist F, Dahlberg L. Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum. 2005;52:120–7.

    Article  PubMed  CAS  Google Scholar 

  35. Kornaat PR, Watt I, Riyazi N, Kloppenburg M, Bloem JL. The relationship between the MRI features of mild osteoarthritis in the patellofemoral and tibiofemoral compartments of the knee. Eur Radiol. 2005;15:1538–43.

    Article  PubMed  Google Scholar 

  36. Cooper C, McAlindon T, Snow S, et al. Mechanical and constitutional risk factors for symptomatic knee osteoarthritis: differences between medial tibiofemoral and patellofemoral disease. J Rheumatol. 1994;21:307–13.

    PubMed  CAS  Google Scholar 

  37. Cicuttini FM, Spector T, Baker J. Risk factors for osteoarthritis in the tibiofemoral and patellofemoral joints of the knee. J Rheumatol. 1997;24:1164–7.

    PubMed  CAS  Google Scholar 

  38. Neuman P, Kostogiannis I, Fridén T, Roos H, Dahlberg LE, Englund M. Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury – a prospective cohort study. Osteoarthritis Cartilage. 2009;17:284–90.

    Article  PubMed  CAS  Google Scholar 

  39. Hinman RS, Crossley KM. Patellofemoral joint osteoarthritis: an important subgroup of knee osteoarthritis. Rheumatology. 2007;46:1057–62.

    Article  PubMed  CAS  Google Scholar 

  40. Frobell RB, Roos EM, Roos HP, Ranstam J, Lohmander LS. A randomized trial of treatment for acute anterior cruciate ligament tears. N Engl J Med. 2010;363:331–42.

    Article  PubMed  CAS  Google Scholar 

  41. Myklebust G, Bahr R. Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med. 2005;39:127–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Panzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panzer, S., Augat, P., Atzwanger, J. et al. 3-T MRI assessment of osteophyte formation in patients with unilateral anterior cruciate ligament injury and reconstruction. Skeletal Radiol 41, 1597–1604 (2012). https://doi.org/10.1007/s00256-012-1445-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-012-1445-y

Keywords

Navigation