Skip to main content
Log in

Evaluation of landfill disposal boundary by means of electrical resistivity imaging

  • Original Article
  • Published:
Environmental Geology

Abstract

This paper deals with an employment of electrical resistivity imaging (ERI) for survey of leachate content on the waste disposal site in Northern Israel. The research consisted of conducting ten ERI lines and drilling investigation wells. Data simulation used a 2D EarthImager inversion program. Analysis of 2D ERI interpretation results shows that determination of the boundary between the landfill body bottom intensively saturated with leachates and underlying layers of highly water saturated fat nonconsolidated clays presents a challenge. However, statistical analysis of ERI data indicates that standard deviation and confidence interval of a set of resistivity data measured in the landfill body are significantly larger than those in underlying clays. Moreover, maximum changes of these parameters are found on the boundary between landfill body and underlying soil, thus reflecting natural differences in scattering of resistivity data measured in these two objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu-Zeid N, Santarato G (2004) On the correspondence between resistivity and texture of loose sediments, saturated with salt water. Near Surf Geophys 3:144–149

    Google Scholar 

  • Abu-Zeid N, Bianchini G, Santarato G, Vaccaro C (2004) Geochemical characterization and geophysical mapping of Landfill leachates: the Marozzo canal case study (NE Italy). Environ Geol 45:439–447

    Article  Google Scholar 

  • Aristodemou E, Thomas-Betts A (2000) DC resistivity and induced polarisation investigations at a waste disposal site and its environments. J Appl Geophys 44:275–302

    Article  Google Scholar 

  • Batayneh AT, Barjous MO (2004) Resistivity surveys near a waste-disposal site in the Qasr Tuba area of central Jordan. Bull Eng Geol Environ 64(3):285–291

    Article  Google Scholar 

  • Bernstone C, Dahlin T, Ohlsson T, Hogland W (2000) DC-resistivity mapping of internal landfill structures: two pre-excavation surveys. Environ Geol 39(3–4):360–368

    Article  Google Scholar 

  • Bowling JC, Rodriguez AB, Harry DL, Zheng C (2005) Delineating alluvial aquifer heterogeneity using resistivity and GPR data. Ground Water 43(6):890–903

    Google Scholar 

  • Cardarelli E, Bernabini M, (1997) Two case studies of the determination of parameters of urban waste dumps. J Appl Geophys 36:167–174

    Article  Google Scholar 

  • Cardarelli E, Fischanger F (2006) 2D data modelling by electrical resistivity tomography for complex subsurface geology. Geophys Prospect 54:121–133

    Article  Google Scholar 

  • Chandra S, Rao VA, Krishnamurthy NS, Dutta S, Ahmed S (2006) Integrated studies for characterization of lineaments used to locate groundwater potential zones in a hard rock region of Karnataka, India. Hydrogeol J 14:767–776

    Article  Google Scholar 

  • Dahlin T (2001) The development of DC resistivity imaging techniques. Comput Geosci 27:1019–1029

    Article  Google Scholar 

  • Dahlin T, Loke MH (1998) Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling. J Appl Geophys 38:237–249

    Article  Google Scholar 

  • Dahlin T, Zhou B (2002) Gradient and mid-point-referred measurements for multi-channel 2D resistivity imaging. In: Proceedings of the 8th meeting environmental and engineering geophysics, Aveiro, Portugal 8–12 September 2002, pp 157–161

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52:379–398

    Article  Google Scholar 

  • De Domenico D, Giannino F, LeucciG, Bottari C (2006) Integrated geophysical surveys at the archaeological site of Tindari (Sicily, Italy). J Archaeol Sci 33:961–970

    Article  Google Scholar 

  • Depountis N, Harris C, Davies MCR, Koukis G, Sabatakakis N (2005) Application of electrical imaging to leachate plume evolution studies under in-situ and model conditions. Environ Geol 47:907–914

    Article  Google Scholar 

  • Dogan M, Papamarinopoulos S (2006) Exploration of the Hellenistic fortification complex at Asea using a multigeophysical prospection approach. Archaeol Prospect 13:1–9

    Article  Google Scholar 

  • Drahor MG, Gokturkler G, Berge MA, Kurtulmus TO (2006) Application of electrical resistivity tomography technique for investigation of landslides: a case from Turkey. Environ Geol 50:147–155

    Article  Google Scholar 

  • Froese DG, Smith DG, Clement DT (2005) Characterizing large river history with shallow geophysics: Middle Yukon River, Yukon Territory and Alaska. Geomorphology 67:391–406

    Article  Google Scholar 

  • Gawande NA, Reinhart DR, Thomas PA, McCreanor PT, Townsend TG (2003) Municipal solid waste in situ moisture content measurement using an electrical resistance sensor. Waste Management 23:667–674

    Article  Google Scholar 

  • Gibert D, Nicollin F, Kergosien B, Bossart P, Nussbaum C, Grislin-Mouëzy A, Conil F, Hoteit N (2006) Electrical tomography monitoring of the excavation damaged zone of the Gallery 04 in the Mont Terri rock laboratory: Field experiments, modelling, and relationship with structural geology. Appl Clay Sci 33:21–34

    Article  Google Scholar 

  • Godio A, Strobbia C, De Bacco G 2006 Geophysical characterization of a rockslide in an alpine region. Eng Geol 83:273– 286

    Article  Google Scholar 

  • Grandjean G, Pennetier C, Bitri A, Meric O, Malet J-P (2006) Caractérisation de la structure interne et de l’état hydrique de glissements argilo-marneux par tomographie géophysique: l’exemple du glissement-coulée de Super-Sauze (Alpes du Sud, France). C R Geosci 338:587–595

    Article  Google Scholar 

  • Guerin R, Munoz ML, Christophe A, Laperrelle C, Hidra M, Drouart E, Grellier S (2004) Leachate recirculation: moisture content assessment by means of a geophysical technique. Waste Manag 24:785–794

    Article  Google Scholar 

  • Gurion I, Novik A (2003) Reconstruction of Har AEshpa (Haifa). Report number 1

  • Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448

    Article  Google Scholar 

  • Hamzah U, Yaacup R, Samsudin A, Ayub MS 2006 Electrical imaging of the groundwater aquifer at Banting, Selangor, Malaysia. Environ Geol 49:1156–1162

    Article  Google Scholar 

  • Hunt P, Powell N, Watson KA (2001) Limiting apparent-resistivity values for dipping-bed earth models. Geophys Prospect 49:577–591

    Article  Google Scholar 

  • Khesin B (2005) Use of geophysical methods for the solution of environmental problems in Israel. HAIT J Sci Eng 2(1–2):95–124

    Google Scholar 

  • Khesin B, Alexeyev V, Eppelbaum L (1996) Interpretation of geophysical fields in complicated environments bookseries. Modern approaches in geophysics, vol 14. Kluwer, Dordrecht

    Google Scholar 

  • Kneisel C (2006) Assessment of subsurface lithology in mountain environments using 2D resistivity imaging. Geomorphology 80:32–44

    Article  Google Scholar 

  • Leucci G (2006) Contribution of Ground Penetrating Radar and Electrical Resistivity Tomography to identify the cavity and fractures under the main Church in Botrugno (Lecce, Italy). J Archaeol Sci 33:1194–1204

    Article  Google Scholar 

  • Liskevich D, Shulov S, Doudkinski D, Roslik A (2003) Physical and mechanical properties of the soft soils of the Kishon River’s delta and flood lands. In: Proceedings of the international geotechnical symposium: foundation engineering on problematic soil ground, St. Petersburg, pp 164–167

  • Loke MH (2000) Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys, p 61. http://www.heritagegeophysicscom/images/lokenotepdf

  • Loke MH, Barker RD (1995) Improvements to the Zohby method for the inversion of resistivity sounding and pseudosection data. Comput Geosci 21(2):321–332

    Article  Google Scholar 

  • Loke MH, Barker RD (1996a) Practical techniques for 3D resistivity surveys and data inversion. Geophys Prospect 44:499–523

    Article  Google Scholar 

  • Loke MH, Barker RD (1996b) Rapid least squares inversion of apparent resistivity pseudosections by a quasi- Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Loke MH, Dahlin T (2002) A comparison of the Gauss–Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49:149–162

    Article  Google Scholar 

  • Martinho E, Almeida F (2006) 3D behaviour of contamination in landfill sites using 2D resistivity/IP imaging: case studies in Portugal. Environ Geol 49:1071–1078

    Article  Google Scholar 

  • Nassir SS, Loke MH, Lee CY, Nawawi MNM (2000) Salt-water intrusion mapping by geoelectrical imaging surveys. Geophys Prospect 48:647–661

    Article  Google Scholar 

  • Nguyen F, Garambois S, Jongmans D, Pirard E, Loke MH (2005) Image processing of 2D resistivity data for imaging faults. J Appl Geophys 57:260–277

    Article  Google Scholar 

  • Panissod C, Michot D, Benderitter Y, Tabbagh A (2001) On the effectiveness of 2D electrical inversion results: an agricultural case study. Geophys Prospect 49:570–576

    Article  Google Scholar 

  • Porsani JL, Elis VR, Hiodo FY (2005) Geophysical investigations for the characterization of fractured rock aquifers in Itu, SE Brazil. J Appl Geophys 57:119–128

    Article  Google Scholar 

  • Reccelli-Snyder H L, Stahl B, Leberfinger A, Warren PG, Warren JJ (1997) Electrical imaging: A Method for Identifying Potential Collapse and other Karst Features Near Roadways. Science Applications International Corporation, Middletown, Pennsylvania. http://www.quality-geophysicscom/50th1pdf

  • Rey E, Jongmans D, Gotteland P, Garambois S (2006) Characterisation of soils with stony inclusions using geoelectrical measurements. J Appl Geophys 58:188–201

    Article  Google Scholar 

  • Rizzo E, Colella A, Lapenna V, Piscitelli S (2004) High-resolution images of the fault-controlled High Agri Valley basin (Southern Italy) with deep and shallow electrical resistivity tomographies. Phys Chem Earth 29:321–327

    Google Scholar 

  • Sharma PV (1997) Environmental and engineering geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Sherif M, El Mahmoudi A, Garamoon H, Kacimov A, Akram S, Ebraheem A, Shetty A (2006) Geoelectrical and hydrogeochemical studies for delineating seawater intrusion in the outlet of Wadi Ham, UAE. Environ Geol 49:536–551

    Article  Google Scholar 

  • Storz H, Storz W, Jacobs F (2000) Electrical resistivity tomography to investigate geological structures of the earth’s upper crust. Geophys Prospect 48:455–471

    Article  Google Scholar 

  • Takahashi T (2004) ISRM Suggested Methods for land geophysics in rock engineering. Int J Rock Mech Mining Sci 41:885–914

    Article  Google Scholar 

  • Takahashi T, Takeuchi T, Sassa K (2006) ISRM Suggested Methods for borehole geophysics in rock engineering. Int J Rock Mech Mining Sci 43:337–368

    Article  Google Scholar 

  • Vafidis A, Economou N, Ganiatsos Y, Manakou M, Poulioudis G, Sourlas G, Vrontaki E, Sarris A, Guy M, Kalpaxis Th (2005) Integrated geophysical studies at ancient Itanos (Greece). J Archaeol Sci 32:1023–1036

    Article  Google Scholar 

  • Wu X, Yifei X, Qi C, Wang T (2003) Computations of secondary potential for 3D DC resistivity modeling using an incomplete Choleski conjugate-gradient method. Geophys Prospect 51:5678–577

    Article  Google Scholar 

  • Zume JT, Tarhule A, Christenson S (2006) Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma. Ground Water Monit Remediat 26(2):62–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Frid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frid, V., Liskevich, G., Doudkinski, D. et al. Evaluation of landfill disposal boundary by means of electrical resistivity imaging. Environ Geol 53, 1503–1508 (2008). https://doi.org/10.1007/s00254-007-0761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-007-0761-3

Keywords

Navigation