Skip to main content
Log in

Intrinsic aquifer vulnerability assessment: validation by environmental tracers in San Miguel de Allende, Mexico

  • Original Article
  • Published:
Environmental Geology

Abstract

Vulnerability maps are important tools for water decision makers and land-use planners for protection of aquifers against contamination. The vulnerability map, according to the parametric method SINTACX for assessing intrinsic aquifer vulnerability, was validated in a case study with chlorofluorocarbon tracer technologies (CFC-11, CFC-12, and CFC-113) of groundwater. The tested area was the 1,295 km2 volcano-sedimentary area of San Miguel de Allende (SMA), Mexico. From the results of this area, it appears that the vulnerability map is in parts inconsistent with the underlying groundwater flow system. Thus, the vulnerability map was corrected with tracer information. The validated vulnerability map indicates that the degree of vulnerability varies from low to moderate-high. Low vulnerability values are found in the graben extending from north to south along the SMA fault system and high values in recharge areas southeast and northwest of the study area. The investigation is a demonstration that the scientific reliability of results of the parametric method can be improved by validation with tracer techniques representing the groundwater dynamics. The flexible structure of SINTACX allows revising and adjusting scores and weights of the parameter maps to rebuild a new vulnerability map consistent with the hydrological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alaniz-Álvarez SA, Nieto-Samaniego AF, Reyes-Zaragoza AM, Orozco-Esquivel MT, Ojeda-García AC, Vassallo LF (2001) Estratigrafía y deformación extensional en la region San Miguel de Allende-Querétaro, México [Stratigraphy and extensional deformation of the region San Miguel de Allende-Querétaro, Mexico]. Rev Mex Cienc Geol 18(2):129–148

    Google Scholar 

  • Aller L, Bennett T, Lehr LH, Petty RJ (1985) DRASTIC—a standardized system for evaluating ground water pollution potential using hydrogeologic settings. US EPA report EPA/600/2-85/018

  • Bullister JL, Weiss RF (1988) Determination of CCl3 and CClF2 in seawater and air. Deep Sea Res 35(5):839–854

    Article  Google Scholar 

  • Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3 F and CCl2 F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour Res 28(9):2257–2284

    Article  Google Scholar 

  • CEASG (1999) Estudio hidrogeológico y modelo matemático del acuífero del Río Laja—San Felipe [Hydrogeological study and mathematical model of the Rio Laja—San Felipe aquifer]. Contract No.: CEAS-APA-GTO-98-002. Comisión Estatal de Agua y Saneamiento de Guanajuato, Guanajuato, Mexico

  • Civita M (1994) Le carte della vulnerabilità degli acquiferi all’inquinamento. Teoria and practica [Aquifer vulnerability maps to pollution. Theory and practice]. Pitagora, Bologna, Academy Press, Washington, DC

  • Civita M, De Maio M (2001) Valutazione e cartografia automatica della vulnerabilità degli acquiferi all’inquinamento con il sistema parametrico SINTACS R5. Pitagora Editrice, Bologna

  • Cook PG, Solomon DK (1995) Transport of atmospheric trace gases to the water table: implications for groundwater dating with chlorofluorocarbons and Krypton-85. Water Resour Res 31(2):263–270

    Article  Google Scholar 

  • COREMI (1999) Carta geológica-minera San Miguel de Allende F14-C54. Consejo de Recursos Minerales, Guanajuato, Mexico

  • Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176

    Article  Google Scholar 

  • Flores-Orozco A (2004) Estudio geofisico del acuifero de San Miguel de Allende, Guanajuato [Geophysical study of the San Miguel de Allende aquifer]. B thesis, Facultad de Ingenieria, National Autonomous University of Mexico

  • Focazio MJ, Reilly TE, Rupert MG, Helsel DR (2002) Assessing ground-water vulnerability to contamination: providing scientifically defensible information for decision makers. USGS Circular 1224

  • Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: van Duijvanbooden W, van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollution. Proceedings and Information No. 38 of the International Conference held in the Netherlands, TNO Committee on Hydrological Research, Delft, The Netherlands, 1987

  • Gogu R, Dassargues A (2000) Current and future trends in groundwater vulnerability assessment. Environ Geol 39(6):549–559

    Article  Google Scholar 

  • Goldscheider N, Hötzl H, Fries W, Jordan P (2001) Validation of a vulnerability map (EPIK) with tracer tests. In: Zwahlen F, Mudry J (eds) Seventh conference on limestone hydrology and fissured media, University of Franche-Comté, Besancon. Memoirs 13:167–170

  • INEGI (1990) Mapa edafológico [Edaphological map], scale 1:250,000. Aguascalientes, Mexico: Instituto Nacional de Estadística Geografía e Informática, Mexico

  • INEGI (1999) Cuaderno Estadístico Municipal. Allende [Statistical handbook of the Allende municipality]. Instituto Nacional de Estadística Geografía e Informática, Aguascalientes, Mexico

  • Lobo-Ferreira JP, Oliveira MM (2004) Groundwater vulnerability assessment in Portugal. Geofísica int 43(4):541–550

    Google Scholar 

  • Lodwik WA, Monson W, Svoboda L (1990) Attribute error of sensitivity analysis of map operations in geographical information systems—suitability analysis. Int J Geogr Inf Sci 4:413–438

    Google Scholar 

  • Lovelock JE, Maggs RJ, Wade RA (1973) Halogenated hydrocarbons in and over the Atlantic. Nature 241:194–196

    Article  Google Scholar 

  • Mahlknecht J (2003) Estimation of recharge in the independence aquifer, central Mexico, by combining geochemical and groundwater flow models. PhD thesis, Institute of Applied Geology, University of Agricultural and Life Sciences (BOKU), Vienna, Austria

  • Mahlknecht J, Steinich B, Navarro de León I (2004a) Groundwater chemistry and mass transfers in the independence aquifer, Central Mexico, by using multivariate statistics and mass-balance models. Environ Geol 45(6):781–795

    Article  Google Scholar 

  • Mahlknecht J, Schneider JF, Merkel BJ, Navarro de León I, Bernasconi SM (2004b) Groundwater recharge and geochemical evolution in semi-arid Central Mexico. Hydrogeol J 12:511–530

    Article  Google Scholar 

  • Mahlknecht J, Gárfias-Soliz JM, Aravena R, Steinich B (2004c) A groundwater quality study in the San Miguel de Allende area, Mexico. In: 33rd international association of hydrogeologists congress, Zacatecas, Mexico, 11–15 October 2004

  • MacDonald AM, Darling WG, Ball DF, Oster H (2003) Identifying trends in groundwater quality using residence time indicators: an example from the Permian aquifer of Dumfries, Scotland. Hydrogeol J 11(4):504–517

    Article  Google Scholar 

  • Maloszewski P (1996) LP models for the interpretation of environmental tracer data. In: Manual on mathematical models in isotope hydrology, IAEA-TECDOC-910. International Atomic Energy Agency, Vienna, pp 9–58

  • Medina-Mejía MG (2005) Estudio hidrogeoquímico de la Cuenca Alta del Río Laja: Municipio de San Miguel de Allende (A hydrogeochemical study of the upper Laja River: municipality of San Miguel de Allende). M.Sc. thesis, Departamento de Ciencias Básicas, Universidad Iberoamericana, Campus León, León, Mexico

  • Napolitano P, Fabbri AG (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: HydroGIS 96: application of geographic information systems in hydrology and water resources management (Proceedings of the Vienna Conference, April 1996). IAHS Publication No.235:559–566

  • Oster H, Sonntag C, Münnich KO (1996) Groundwater age dating with chlorofluorocarbons. Water Resour Res 32:2989–3001

    Article  Google Scholar 

  • Perrin J, Pochon A, Jeannin PY, Zwahlen F (2004) Vulnerability assessment in karstic areas: validation by field experiments. Environ Geol 46:237–245

    Article  Google Scholar 

  • Plummer LN, Busenberg E (1999) Chlorofluorocarbons: tools for dating and tracing young groundwater: In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 441–478

    Google Scholar 

  • SSA (2000) Modificación a la Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización [Mexican drinking water standard]. Secretaría de Salud y Ambiente, Mexico City, Mexico

  • Thompson GM, Hayes JM (1979) Trichloromethane in groundwater: a possible tracer and indicator of groundwater age. Water Resour Res 15:546–554

    Google Scholar 

  • UGTO (2002) Carburos de Flúor y Cloro (CFC). Una aplicación innovadora en la Reevaluación del Sistema de Recarga en Acuíferos. Implementación en la Cuenca Alta del Río Laja (Guanajuato) [Chlorofluorocarbons (CFCs). An innovative application in the re-evaluation of the aquifer recharge system. Implementation to the Upper Laja Basin (Guanajuato)]. Research Report. Programa de Investigación Institucional 2000, Universidad de Guanajuato, Guanajuato, Mexico

  • UGTO (2004) El impacto de un entorno complejo y transitorio para el agua subterránea—Una investigación hidrogeológica y geoquímica en la zona de San Miguel de Allende [The impact of a complex and transient system for groundwater—a hydrogeological and geochemical research in the San Miguel de Allende zone]. Professional Report, Contract No. 02/16-CEAG/SDA/CONCYTEG-064, Universidad de Guanajuato, Guanajuato, Mexico

  • Van Stempvoort D, Ewert L, Wassenaar L (1995) AVI: a method for groundwater protection mapping in the Praire Province of Canada. PPWB Report No. 114, National hydrogeology research institute, Saskatoon Saskatchewan, Canada

  • Warner MJ, Weiss RF (1985) Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep Sea Res 32(12):1485–1497

    Article  Google Scholar 

  • WHO (1998) Guidelines for drinking-water quality, 2nd edn., vol 2. Health criteria and other supporting information, 1996. Addendum to vol 2. 1998. World Health Organization, Geneva, pp 940–949

Download references

Acknowledgments

The analytical results used in this article were obtained during the project investigation under contract no. 02/16-CEAG/SDA/CONCyTEG-064, co-funded by Comisión Estatal del Estado de Guanajuato (CEAG), Consejo de Ciencia y Tecnología de Guanajuato (CONCyTEG), and Secretaría de Desarrollo Agropecuario (SDA). We thank Lars GE Backstrom for his comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Mahlknecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahlknecht, J., Medina-Mejía, M.G., Gárfias-Solis, J. et al. Intrinsic aquifer vulnerability assessment: validation by environmental tracers in San Miguel de Allende, Mexico. Environ Geol 51, 477–491 (2006). https://doi.org/10.1007/s00254-006-0344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0344-8

Keywords

Navigation