Skip to main content
Log in

How to cut a sediment core for 210Pb geochronology

  • Original Article
  • Published:
Environmental Geology

Abstract

210Pb geochronology is described mathematically, but how to cut a sediment core is not explicit. Thick sectioning may reduce dating reliability; but on the contrary, thin sectioning is time-consuming. Considering the counting error of excess 210Pb, a new method was proposed for the determination of meaningful thickness for sectioning. The authors applied this method to a core from Tokyo Bay. To increase the thickness with depth, the treatment is helpful in reducing the sample number for measurement and improving the dating accuracy. In addition, the averaging effect involved in sectioning was discussed, and it was confirmed that the averaging effect in the new method on 210Pb geochronology may generally be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35

    Article  Google Scholar 

  • Athy LF (1930) Density, porosity and compaction of sedimentary rocks. Bull Am Assoc Pet Geol 14:1–24

    Google Scholar 

  • Bay SM, Zeng EY, Lorenson TD, Tran K, Alexander C (2003) Temporal and spatial distributions of contaminants in sediments of Santa Monica Bay, California. Mar Environ Res 56:255–276

    Article  Google Scholar 

  • Bowman S (1990) Radiocarbon dating. British Museum Publications Ltd., London, pp 38–39

    Google Scholar 

  • Christensen ER (1982) A model for radionuclides in sediments influenced by mixing and compaction. J Geophys Res 87:566–572

    Google Scholar 

  • Goldberg EG (1963) Geochronology with 210Pb, radioactivity dating. IAEA, Vienna, pp 121–131

    Google Scholar 

  • JRIA (1984) Isotope handbook (in Japanese). Maruzen Co. Ltd., Tokyo, p 3

    Google Scholar 

  • Koide M, Soutar A, Goldberg ED (1972) Marine geochronology with 210Pb. Earth Planet Sci Lett 14:442–446

    Article  Google Scholar 

  • Krishnaswami S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414

    Article  Google Scholar 

  • Loevinger R, Berman M (1951) Efficiency criteria in radioactivity counting. Nucleonics 9(1):26–39

    Google Scholar 

  • Masqué P, Isla E, Sanchez-Cabeza JA, Palanques A, Bruach JM, Puig P, Guillén J (2002) Sediment accumulation rates and carbon fluxes to bottom sediments at the Western Bransfield Strait (Antarctica). Deep-Sea Res II 49:921–933

    Article  Google Scholar 

  • Matsumoto E (1975) 210Pb geochronology of sediments from Lake Shinji. Geochem J 9:167–172

    Google Scholar 

  • Matsumoto E (1987) Pb-210 geochronology of sediments. Studies of the San’in Region (Natural Environment) 3:187–194

    Google Scholar 

  • Matsumoto E, Wong CS (1977) Heavy metal sedimentation in Saanich Inlet measured with 210Pb technique. J Geophys Res 82:5477–5482

    Google Scholar 

  • Oguri K, Matsumoto E, Yamada M, Saito Y, Iseki K (2003) Sediment accumulation rates and budgets of depositing particles of the East China Sea. Deep-Sea Res II 50:513–528

    Article  Google Scholar 

  • Robbins JA (1978) Geochemical and geophysical applications of radioactive lead. In: Nriagu JO (ed) Biogeochemistry of lead in the environment. Elsevier Scientific, Amsterdam, pp 285–393

    Google Scholar 

  • Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lakes Michigan using Pb-210 and Cs-137 methods. Geochim Cosmochim Acta 39:285–304

    Article  Google Scholar 

  • Rubio L, Linares-Rueda A, Dueñas C, Fernández MC, Clavero V, Niell FX, Fernández JA (2003) Sediment accumulation rate and radiological characterisation of the sediment of Palmones River estuary (southern of Spain). J Environ Radioact 65:267–280

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Dynamics of the Sun-Earth-Life Interactive System, No. G-4, the twenty-first century COE program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqiang Lu.

Appendix

Appendix

Solution of Eq. 5

Equation 5 can be transformed into

$$ A_0 \exp \left( {\frac{{ - \lambda }} {s}\sum\limits_{i = 1}^{n - 1} {h_i } } \right) - \sqrt {A_0 } \exp \left[ {\frac{{ - \lambda }} {s}\left( {\sum\limits_{i = 1}^{n - 1} {h_i + \frac{1} {2}h_n } } \right)} \right] - A_0 \exp \left[ {\frac{{ - \lambda }} {s}\left( {\sum\limits_{i = 1}^{n - 1} {h_i + \frac{1} {2}h_n } } \right)} \right] = 0. $$
(15)

Let \( {{\sqrt {A_0 } } \mathord{\left/ {\vphantom {{\sqrt {A_0 } } {A_0 }}} \right. \kern-\nulldelimiterspace} {A_0 }} = \varepsilon _1 \), Eq. 15 can be written as

$$ \exp \left( {\frac{{ - \lambda }} {{2s}}h_n } \right) + \varepsilon _1 \exp \left( {\frac{\lambda } {{2s}}\sum\limits_{i = 1}^{n - 1} {h_i } } \right)\exp \left( {\frac{{ - \lambda }} {{4s}}h_n } \right) - 1 = 0. $$
(16)

Let \(\exp \left( { - \frac{{\lambda h_n }} {{4s}}} \right) = y,\) the equation can be rewritten as

$$ y^2 + \varepsilon _1 \exp \left( {\frac{\lambda } {{2s}}\sum\limits_{i = 1}^{n - 1} {h_i } } \right)y - 1 = 0. $$
(17)

The solution as shown in Eq. 6 is therefore obtained.

The transformation procedure for D

For \(A_x = A_0 \exp \left( { - \frac{{\lambda x}} {s}} \right),\quad n \geqslant 1,h > 0,{\enspace} x_n = \left( {n - \frac{1} {2}} \right)h,\)

$$ \begin{aligned} D & = \frac{1} {h}\int\limits_{(n - 1)h}^{nh} {A_0 \exp \left( { - \frac{\lambda } {s}x} \right)} {\text{d}}x - A_n \\ & = \frac{{A_0 }} {h}\int\limits_{\left( {n - 1} \right)h}^{nh} {\exp \left( { - \frac{\lambda } {s}x} \right)\,{\text{d}}x} - A_0 \exp \left[ { - \frac{\lambda } {s}\left( {n - \frac{1} {2}h} \right)} \right] \\ & = \frac{{A_0 }} {h}\left[ { - \frac{s} {\lambda }\exp \left( { - \frac{\lambda } {s}x} \right)} \right]_{(n - 1)h}^{nh} - A_0 \exp \left[ { - \frac{\lambda } {s}\left( {n - \frac{1} {2}h} \right)} \right] \\ & = - \frac{{A_0 s}} {{h\lambda }}\left( {\exp \left( { - \frac{\lambda } {s}nh} \right) - \exp \left[ { - \frac{\lambda } {s}(n - 1)h} \right]} \right) - A_0 \exp \left[ { - \frac{\lambda } {s}\left( {n - \frac{1} {2}h} \right)} \right] \\ & = - \frac{{A_0 s}} {{h\lambda }}\exp \left( { - \frac{\lambda } {s}nh} \right) + \frac{{A_0 s}} {{h\lambda }}\exp \left( { - \frac{\lambda } {s}nh} \right)\exp \left( {\frac{\lambda } {s}h} \right) - A_0 \exp \left( { - \frac{\lambda } {s}nh} \right)\exp \left( {\frac{\lambda } {{2s}}h} \right) \\ & = A_0 \exp \left( { - \frac{\lambda } {s}nh} \right)\left( {\frac{s} {{\lambda h}}\exp \left( {\frac{\lambda } {s}h} \right) - \frac{s} {{\lambda h}} - \exp \left( {\frac{\lambda } {{2s}}h} \right)} \right). \\ \end{aligned} $$
(18)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Matsumoto, E. How to cut a sediment core for 210Pb geochronology. Environ Geol 47, 804–810 (2005). https://doi.org/10.1007/s00254-004-1209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-004-1209-7

Keywords

Navigation