Skip to main content

Advertisement

Log in

Valorization of whey-based side streams for microbial biomass, molecular hydrogen, and hydrogenase production

  • Bioenergy and Biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Side streams of the dairy industry are a suitable nutrient source for cultivating microorganisms, producing enzymes, and high-value chemical compounds. The heterotrophic Escherichia coli and chemolithoautotroph Ralstonia eutropha are of major biotechnological interest. R. eutropha is a model organism for producing O2-tolerant [NiFe]-hydrogenases (Hyds) (biocatalysts), and E. coli has found widespread use as an expression platform for producing recombinant proteins, molecular hydrogen (H2), and other valuable products. Aiming at developing suitable cultivation media from side streams of the dairy industry, the pre-treatment (filtration, dilution, and pH adjustment) of cheese (sweet) whey (SW) and curd (acid) whey (AW), with and without the use of ß-glucosidase, has been performed. Growth parameters (oxidation–reduction potential (ORP), pH changes, specific growth rate, biomass formation) of E. coli BW25113 and R. eutropha H16 type strains were monitored during cultivation on filtered and non-filtered SW and AW at 37 °C, pH 7.5 and 30 °C, pH 7.0, respectively. Along with microbial growth, measurements of pH and ORP indicated good fermentative growth. Compared to growth on fructose-nitrogen minimal salt medium (control), a maximum cell yield (OD600 4.0) and H2-oxidizing Hyd activity were achieved in the stationary growth phase for R. eutropha. Hyd-3-dependent H2 production by E. coli utilizing whey as a growth substrate was demonstrated. Moreover, good biomass production and prolonged H2 yields of ~ 5 mmol/L and cumulative H2 ~ 94 mL g/L dry whey (DW) (ß-glucosidase-treated) were observed during the cultivation of the engineered E. coli strain. These results open new avenues for effective whey treatment using thermostable β-glucosidase and confirm whey as an economically viable commodity for biomass and biocatalyst production.

Key points

• Archaeal thermostable β-glucosidase isolated from the metagenome of a hydrothermal spring was used for lactose hydrolysis in whey.

• Hydrogenase enzyme activity was induced during the growth of Ralstonia eutropha H16 on whey.

• Enhanced biomass and H 2 production was shown in a genetically modified strain of Escherichia coli.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Alvarez-Guzmán CL, Cisneros-de la Cueva S, Balderas-Hernández VE, Smoliński A, De León-Rodríguez A (2020) Biohydrogen production from cheese whey powder by Enterobacter asburiae: effect of operating conditions on hydrogen yield and chemometric study of the fermentative metabolites. Energy Rep 6:1170–1180

    Article  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205e18

    Article  Google Scholar 

  • Ansari S, Satar R, Kashif Zaidi S, Ahmad A (2014) Immobilization of Aspergillus oryzae β-galactosidase on cellulose acetate-polymethylmethacrylate membrane and its application in hydrolysis of lactose from milk and whey. Int Sch Res Notices 163987

  • Bagramyan K, Galstyan A, Trchounian A (2000) Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival: effects of impermeable oxidant. Bioelectrochemistry 51:151–156

    Article  CAS  PubMed  Google Scholar 

  • Bekbayev K, Mirzoyan S, Toleugazykyzy A, Tlevlessova D, Vassilian A, Poladyan A, Trchounian K (2022) Growth and hydrogen production by Escherichia coli during utilization of sole and mixture of sugar beet, alcohol, and beer production waste. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02692-x

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carvalho C, Lima W, de Medeiros F, Dantas J, de Araújo PC, Dos Santos E, de Sousa JF (2021) Lactose hydrolysis using β-galactosidase from Kluyveromyces lactis immobilized with sodium alginate for potential industrial applications. Prep Biochem Biotechnol 51(7):714–722

    Article  CAS  PubMed  Google Scholar 

  • Castiñeiras TS, Williams SG, Hitchcock AG, Smith DC (2018) E. coli strain engineering for the production of advanced biopharmaceutical products. FEMS Microbiol Lett 365(5):fny162. https://doi.org/10.1093/femsle/fny162

    Article  CAS  Google Scholar 

  • Chanalia P, Gandhi D, Attri P, Dhanda S (2018) Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorg Chem 77:176–189

    Article  CAS  PubMed  Google Scholar 

  • Chandrapala J, Duke MC, Gray SR, Zisu B, Weeks M, Palmer M, Vasiljevic T (2015) Properties of acid whey as a function of pH and temperature. J Dairy Sci 98(7):4352–4363. https://doi.org/10.3168/jds.2015-9435

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Chen H, Xia Y, Yang J, Zhao J, Tian F, Zhang H (2009) Immobilization of recombinant thermostable beta-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. J Dairy Sci 92(2):491–498

    Article  CAS  PubMed  Google Scholar 

  • Dalton B, Bhagabati P, De Micco J, Padamati RB, O’Connor K (2022) A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts 12(3):319. https://doi.org/10.3390/catal12030319

    Article  CAS  Google Scholar 

  • de Andrade B, Timmers L, Renard G, Volpato G (2020) Microbial β-Galactosidases of industrial importance: computational studies on the effects of point mutations on the lactose hydrolysis reaction. Biotechnol Prog 36(4)

  • de Divitiis M, Ami D, Pessina A, Alessandro Palmioli A, Sciandrone B, Airoldi C, Regonesi ME, Brambilla L, Lotti M, Natalello A, Stefania Brocca S, Mangiagalli M (2023) Cheese-whey permeate improves the fitness of Escherichia coli cells during recombinant protein production. Biotechnol Biofuels 16:30. https://doi.org/10.1186/s13068-023-02281-8

    Article  CAS  Google Scholar 

  • Faccia M, Gambacorta G, Martemucci G, Difonzo G, D’Alessandro AG (2020) Chemical-sensory traits of fresh cheese made by enzymatic coagulation of donkey milk. Foods 9(1):16. https://doi.org/10.3390/foods9010016

    Article  CAS  Google Scholar 

  • Ghazaryan A, Blbulyan S, Poladyan A, Trchounian A (2015) Redox stress in Geobacilli from geothermal springs: phenomenon and membrane-associated response mechanisms. Bioelectrochemistry 105:1–6. https://doi.org/10.1016/j.bioelechem.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Nguyen QD, Liu S, Taherzadeh MJ, Sirohi R (2022) Microbes in the valorization of biomass to value-added products. Bioresour Technol 347. https://doi.org/10.1016/j.biortech.2022.126738

  • Haider T, Husain Q (2007) Calcium alginate entrapped preparation of Aspergillus oryzae β-galactosidase: its stability and applications in the hydrolysis of lactose. Int J Biol Macromol 41:72–80

    Article  CAS  PubMed  Google Scholar 

  • Hassan N, Nguyen T, Intanon M, Kori L, Patel B, Haltrich D, Tan T (2015) Biochemical and structural characterization of a thermostable β-glucosidase from Halothermothrix orenii for galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol 99(4):1731–1744

    Article  CAS  PubMed  Google Scholar 

  • Iskandaryan M, Blbulyan S, Sahakyan M, Vassilaian A, Trchounian K, Poladyan A (2023) L-amino acids affect the hydrogenase activity and growth of Ralstonia eutropha H16. AMB Express. https://doi.org/10.1186/s13568-023-01535-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Jugder BE, Chen Z, Ping DT, Lebhar H, Welch J, Marquis CP (2015) An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture. Microb Cell Fact 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaustav S, Kumar KB, Bibha B, Anil V (2018) Current advances and applications of fuel cell technologies. Recent advancements in biofuels and Bioenergy utilization 303–37. https://doi.org/10.1007/978-981-13-1307-3_13

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Lenz O, Lauterbach L, Frielingsdorf S (2018) O2-tolerant [NiFe]-hydrogenases of Ralstonia eutropha H16: physiology, molecular biology, purification, and biochemical analysis. Meth Enzymol 63:117–151. https://doi.org/10.1016/bs.mie.2018.10.008

    Article  CAS  Google Scholar 

  • Lenz O, Lauterbach L, Frielingsdorf S, Friedrich B (2015) Oxigen-tolerant hydrogenases and their biotechnological potential. Biohydrogen, Chapter 4:61–96

    Article  Google Scholar 

  • Li B, Wang Z, Li S, Donelan W, Wang X, Cui T, Tang D (2013) Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus. BMC Biotechnol 13(73)

  • Li S, Zhu X, Xing M (2019) A new β-galactosidase from the antarctic bacterium Alteromonas sp. ANT48 and its potential in formation of prebiotic galacto-oligosaccharides. Mar Drugs 17(11):599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Xie J, Liu J, Ouyang J (2019) A novel thermostable β-galactosidase from Bacillus coagulans with excellent hydrolysis ability for lactose in whey. J Dairy Sci 102(11):9740–9748

    Article  CAS  PubMed  Google Scholar 

  • Long CP, Gonzalez JE, Feist AM, Palsson BO, Antoniewicz MR (2018) Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proc Natl Acad Sci 115:222–227

    Article  CAS  PubMed  Google Scholar 

  • Luan S, Duan X (2022) A novel thermal-activated β-galactosidase from Bacillus aryabhattai GEL-09 for lactose hydrolysis in milk. Foods 11(3):372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem 111(22):7851–7861. https://doi.org/10.1021/jp070911w

    Article  CAS  Google Scholar 

  • McPherson IJ, Vincent KA (2014) Electrocatalysis by hydrogenases: lessons for building bio-inspired device. J Braz Chem Soc 25(3):427–441

    CAS  Google Scholar 

  • Mikheeva ER, Katraeva IV, Kovalev AA, Kovalev DA, Nozhevnikova AN, Panchenko V, Fiore U, Litti YV (2021) The start-up of continuous biohydrogen production from cheese whey: comparison of inoculum pre-treatment methods and reactors with moving and fixed polyurethane carriers. Appl Sci 11(2):510. https://doi.org/10.3390/app11020510

    Article  CAS  Google Scholar 

  • Mirzoyan S, Aghekyan H, Vanyan L, Vassilian A, Trchounian K (2022) Coffee silverskin as a substrate for biobased production of biomass and hydrogen by Escherichia coli. Int J Energy Res 46:23110–23121

    Article  CAS  Google Scholar 

  • Muñoz-Páez K, Poggi-Varaldo H, García-Mena J, Ponce-Noyola MT, Ramos-Valdivia AC, Barrera-Cortés J, Robles-González IV, Ruiz-Ordáz N, Villa-Tanaca L, Rinderknecht-Seijas N (2014) Cheese whey as substrate of batch hydrogen production: effect of temperature and addition of buffer. Waste Manag Res 32(5):434–440. https://doi.org/10.1177/0734242X14527333

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Vu H, Nguyen N, Do T, Nguyen T (2016) Effect of mutations to amino acid A301 and F361 in thermostability and catalytic activity of the β-galactosidase from Bacillus subtilis VTCC-DVN-12-01. BMC Biochem 17(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Obileke K, Onyeaka H, Meyer EL, Nwokolo N (2021) Microbial fuel cells, a renewable energy technology for bio-electricity generation. Electrochem Commun 125. https://doi.org/10.1016/j.elecom.2021.107003

  • Pan Q, Zhu J, Liu L, Cong Y, Hu F, Li J, Yu X (2010) Functional identification of a putative β-galactosidase gene in the special lac gene cluster of Lactobacillus acidophilus. Curr Microbiol 60:172–178

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Srivastava S, Rai P, Duke M (2019) Cheese whey to biohydrogen and useful organic acids: a non-pathogenic microbial treatment by L. acidophilus. Sci Rep 9:8320. https://doi.org/10.1038/s41598-019-42752-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Park A, Oh D (2010) Effects of galactose and glucose on the hydrolysis reaction of a thermostable beta-galactosidase from Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 85(5):1427–1435

    Article  CAS  PubMed  Google Scholar 

  • Petrosyan H, Vanyan L, Trchounian A, Trchounian K (2020) Defining the roles of the hydrogenase 3 and 4 subunits in hydrogen production during glucose fermentation: a new model of an H2-producing hydrogenase complex. Int J Hydrogen Energy 45:5192–5201. https://doi.org/10.1016/j.ijhydene.2019.09.204

    Article  CAS  Google Scholar 

  • Pinske C, Sawers R G (2016) Anaerobic formate and hydrogen metabolism. Eco Sal Plus. 7(1). https://doi.org/10.1128/ecosalplus.ESP-0011-2016

  • Piskarev I, Ushkanov V, Aristova N, Likhachev P, Myslivets T (2010) Establishment of the redox potential of water saturated with hydrogen. Biophysics 55:13–17. https://doi.org/10.1134/S0006350910010033

    Article  Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Article  PubMed  Google Scholar 

  • Poladyan A, Blbulyan S, Sahakyan M, Lenz O, Trchounian A (2019) Growth of the facultative chemolithoautotroph R eutropha on organic waste materials: growth characteristics, redox regulation and hydrogenase activity. Microb Cell Fact 18:201. https://doi.org/10.1186/s12934-019-1251-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poladyan A, Blbulyan S, Semashko T, Zhukouskaya L, Dziameshka V, Trchounian A (2020) Application of organic waste glycerol to produce of crude extracts of bacterial cells and microbial hydrogenases – the anode enzymes of bio-electrochemical system. FEMS Microbiol Lett 367(7):fnaa056. https://doi.org/10.1093/femsle/fnaa056

    Article  CAS  PubMed  Google Scholar 

  • Poladyan A, Trchounian K, Vasilian A, Trchounian A (2018) Hydrogen production by Escherichia coli using brewery waste: optimal pre-treatment of waste and role of different hydrogenases. Renew Energ 115:931–936. https://doi.org/10.1016/j.renene.2017.09.022

    Article  CAS  Google Scholar 

  • Poulpiquet D, Ranava K, Monsalve MT, Lojou E (2014) Biohydrogen for a new generation of H2/O2 biofuel cells: a sustainable energy perspective. Chem Electro Chem 1:1724–1750

    Google Scholar 

  • Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16(1–2):91–108. https://doi.org/10.1159/000142897

    Article  CAS  PubMed  Google Scholar 

  • Ripple WJ, Wolf C, Newsome TM, Barnard P, Moomaw WR and 11,258 scientist signatories from 153 countries (2020) World Scientists’ Warning of a Climate Emergency. BioScience 70 (1): 1-12

  • Rosales-Colunga LM, Alvarado-Cuevas ZD, Razo-Flores E, Rodríguez Ade L (2013) Maximizing hydrogen production and substrate consumption by Escherichia coli WDHL in cheese whey fermentation. Appl Biochem Biotechnol 171:704–715. https://doi.org/10.1007/s12010-013-0394-9

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Colunga LM, Razo-Flores E, Ordoñez LG, Alatriste-Mondragón F, De León-Rodríguez A (2010) Hydrogen production by Escherichia coli ΔhycA ΔlacI using cheese whey as substrate. Int J Hydrogen Energy 35(2):491–499. https://doi.org/10.1016/j.ijhydene.2009.10.097

    Article  CAS  Google Scholar 

  • Ruff A, Szczesny J, Marković N, Conzuelo F, Zacarias S, Pereira IAC, Lubitz W, Schuhmann W (2018) A fully protected hydrogenase/polymer-based bioanode for high-performance hydrogen/glucose biofuel cells. Nat Commun 9:3675

    Article  PubMed  PubMed Central  Google Scholar 

  • Saqib S, Akram A, Halim S, Tassaduq S (2017) Sources of β-galactosidase and its applications in food industry. Biotech 7(1):79

    Google Scholar 

  • Sargent F (2016) The model [NiFe]-hydrogenases of Escherichia coli. Adv Microb Physiol 68:433–507

    Article  CAS  PubMed  Google Scholar 

  • Sargsyan H, Gabrielyan L, Trchounian A (2016) The distillers grains with solubles as a perspective substrate for obtaining biomass and producing bio-hydrogen by Rhodobacter sphaeroides. Biomass Bioenerg 90:90–94. https://doi.org/10.1016/j.biombioe.2016.03.042

    Article  CAS  Google Scholar 

  • Schröder C, Elleuche S, Blank S, Antranikian G (2014) Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme Microb Technol 57:48–54. https://doi.org/10.1016/j.enzmictec.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  • Schwartz E, Voigt B, Zühlke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B (2009) A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics 9:5132–5142

    Article  CAS  PubMed  Google Scholar 

  • Soares FJ, Confortin CT, Todero I, Mayer DF, Mazutti AM (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sustain Energ Rev 117:109484

    Article  CAS  Google Scholar 

  • Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR (2019) The role of hydrogen and fuel cells in the global energy system. Energy Envir Sci 12:463–491

    Article  CAS  Google Scholar 

  • Teli A, Ficara E, Malpei F (2014) Bio-hydrogen production from cheese whey by dark fermentation. Chem Eng Trans 37:613–618

    Google Scholar 

  • Trchounian K, Poladyan A, Trchounian A (2017a) Enhancement of Escherichia coli bacterial biomass and hydrogen production by some heavy metal ions and their mixtures during glycerol vs glucose fermentation at a relatively wide range of pH. Int J Hydrogen Energy 42(10):6590–6597

    Article  CAS  Google Scholar 

  • Trchounian K, Poladyan A, Vassilian A, Trchounian A (2012) Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the F0F1-ATPase. Crit Rev Bioch Mol 47(3):236–249

    Article  CAS  Google Scholar 

  • Trchounian K, Sawers G, Trchounian A (2017b) Improving biohydrogen productivity by microbial dark- and photo-fermentations: novel data and future approaches. Renew Sustain Energy Rev 80:1201–1216

    Article  CAS  Google Scholar 

  • Tsaturyan AH, Ghochikyan VT, Mkrtchyan AF, Minasyan EV, Mardiyan ZZ, Saghyan AS (2016) Determination of organic acids by the method of reverse-phase HPLC. Chem J Arm 69:465–471

    CAS  Google Scholar 

  • Tyulenev A, Smirnova G, Muzyka N, Ushakov V, Oktyabrsky O (2018) The role of sulfides in stress-induced changes of Eh in Escherichia coli cultures. Bioelectrochemistry 121:11–17

    Article  CAS  PubMed  Google Scholar 

  • Usmani Z, Sharma M, Gaffey J, Sharma M, Dewhurst R J, Moreau B Newbold J, Clark W, Thakur VK, Gupta VK (2022) Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour Technol 346. https://doi.org/10.1016/j.biortech.2021.126444

  • Vasileva N, Ivanov Y, Damyanova S, Kostova I, Godjevargova T (2016) Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane. Int J Biol Macromol 82:339–346

    Article  CAS  PubMed  Google Scholar 

  • Vassilian A, Trchounian A (2009) Environment oxidation-reduction potential and redox sensing by bacteria. Chapter: Bacterial membranes. Res Signpost: Kerala (India) 163–95

  • Vera C, Guerrero C, Aburto C, Illanes A (2020) Conventional and non-conventional applications of β-galactosidases. BBA - Proteins and Proteomics 1868(1)

  • Wood TK, Maeda T, Sanchez-Torres V (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77(4):879–890

    Article  PubMed  Google Scholar 

  • Yuan T, Yang P, Wang Y, Meng K, Luo H, Zhang W, Yao B (2008) Heterologous expression of a gene encoding a thermostable beta-galactosidase from Alicyclobacillus acidocaldarius. Biotechnol Lett 30(2):343–348

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang F, Song L, Sun N, Guan W, Liu B, Zhang W (2018) Site-directed mutation of β-galactosidase from Aspergillus candidus to reduce galactose inhibition in lactose hydrolysis. 3 Biotech 452:8(11)

  • Zikmanis P, Kolesovs S, Semjonovs P (2020) Production of biodegradable microbial polymers from whey. Bioresour Bioprocess 7:36. https://doi.org/10.1186/s40643-020-00326-6

    Article  Google Scholar 

Download references

Funding

The research is conducted within the ADVANCE Research Grant provided by the Foundation for Armenian Science and Technology and Yerevan State University to AP, KT, EM, APa, SA, and GA and the grant [21AG-1F043] from the State Committee of Science, Ministry of Education, Science, Culture and Sport of Armenia to AP.

Author information

Authors and Affiliations

Authors

Contributions

AP conceived and designed the study. AP and KT wrote the manuscript. MI and HA performed the experiments and analyzed the data. EM and AT performed HPLC and ICP-OES analysis of whey. LK and APa performed enzymatic whey treatment and provided analytical tools. SA and GA edited the manuscript and gave recommendations for the experiment. All authors read and approved the manuscript.

Corresponding author

Correspondence to Anna Poladyan.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with animals or human participants performed by any of the authors.

Consent for publication

The authors agree to publication in the journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 453 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poladyan, A., Trchounian, K., Paloyan, A. et al. Valorization of whey-based side streams for microbial biomass, molecular hydrogen, and hydrogenase production. Appl Microbiol Biotechnol 107, 4683–4696 (2023). https://doi.org/10.1007/s00253-023-12609-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12609-x

Keywords

Navigation