Skip to main content
Log in

Influence of probiotics on biofilm formation and diversity of bacteria colonising crop sorghum ensiled with unsalable vegetables

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to characterise in situ digestion kinetics and bacterial colonisation of crop sorghum ensiled with unsalable carrot or pumpkin at 0, 20 or 40% dry matter (DM). Silages with or without the application of a commercial probiotic were incubated in situ for 0, 3, 6, 9, 24 and 48 h. Calculation of in situ digestion kinetics was conducted for DM, organic matter and neutral detergent fibre (aNDF). The V4 region of the 16S rRNA gene was sequenced to determine the composition and diversity of bacteria colonising the silage. Organic matter and DM digestion kinetics indicated that greater vegetable inclusion increased (P < 0.05) the soluble fraction and effective degradability. Bacterial richness at 48 h incubation was greater (P = 0.02) in 20% carrot and 40% pumpkin treatments, compared with the control. An effect of level × probiotic was observed with increased Shannon diversity (P = 0.01) for 40% carrot and 20% pumpkin probiotic treatments, respectively. Primary colonising bacteria were members of the Prevotella genus, dominating after 3 and 6 h of incubation. The abundance of Prevotella increased by 4.1% at 3 h (P < 0.01) and by 4.7% at 9 h incubation with probiotics, compared with the control. Secondary biofilm colonisers included members of Treponema, Saccharofermentans, Fibrobacter, Ruminobacter and Anaerosporobacter genera, dominant from 9 h incubation onward. This study demonstrated that including unsalable vegetables at 20 or 40% DM increases the soluble fraction and effective degradability of sorghum silage during in situ digestion and increases diversity of bacteria colonising ensiled vegetables within the rumen.

Key points

Ensiling unsalable vegetables is a viable strategy to reduce food waste.

Ensiled vegetables increased in situ soluble fraction and effective degradability.

Bacterial richness at 48 h incubation improved with 20% carrot or 40% pumpkin.

Diversity of colonising rumen bacteria increased with carrot or pumpkin inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The 16S rRNA gene sequences are available through the NCBI sequence read archive under BioProject accession PRJNA580011.

References

  • Ali M, Cone JW, van Duinkerken G, Klop A, Kruisdijk J, Blok MC, Bruinenberg M, Hendriks WH (2014) Relationship between chemical composition and in situ rumen degradation characteristics of grass silages in dairy cows. NJAS-Wagen J Life Sci 70-71:9–15. https://doi.org/10.1016/j.njas.2014.01.002

    Article  Google Scholar 

  • Anderson KL (1995) Biochemical analysis of starch degradation by Ruminobacter amylophilus 70. Appl. Environ. Microbiol. 61(4):1488–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • AOAC (1990) Official methods of analysis: changes in official methods of analysis made at the annual meeting. Supplement, vol 15. Association of Official Analytical Chemists, Rockville, USA

  • Avila-Stagno J, Chaves A, He M, McAllister TJ (2013) Increasing concentrations of wheat dry distillers’ grains with solubles in iso-nitrogenous finishing diets reduce lamb performance. Small Ruminant Res 114(1):10–19

    Google Scholar 

  • Bajagai YS, Klieve AV, Dart PJ, Bryden WL (2016) Probiotics in animal nutrition: production, impact and regulation. FAO Animal Production and Health Paper No. 179, FAO, Rome, Italy

  • Bakshi M, Wadhwa M, Makkar HP (2016) Waste to worth: vegetable wastes as animal feed. CAB Rev 11(012):1–26

    Google Scholar 

  • Barbehenn RV, Chen Z, Karowe DN, Spickard AJ (2004) C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Glob Chang Biol 10(9):1565–1575

    Google Scholar 

  • Bekele AZ, Koike S, Kobayashi Y (2010) Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol Lett 305(1):49–57. https://doi.org/10.1111/j.1574-6968.2010.01911.x

    Article  CAS  PubMed  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Cai Y, Takahashi T, Yoshida N, Tohno M, Uegaki R, Nonaka K, Terada F (2011) Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage. J Dairy Sci 94(8):3902–3912. https://doi.org/10.3168/jds.2010-3623

    Article  CAS  PubMed  Google Scholar 

  • Carberry CA, Kenny DA, Han S, McCabe MS, Waters SM (2012) Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Appl Environ Microbiol 78(14):4949–4958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR (2017) Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep 7(1):2594–2594. https://doi.org/10.1038/s41598-017-02995-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa RF, de Assis Pires DA, Almeida Moura MM, Santos Rodrigues JA, Rocha Júnior VC, Cangussú Tolentino D (2016) In situ degradability of dry matter and fibrous fraction of sorghum silage. Acta Sci Anim Sci 38(2):171–176

    Google Scholar 

  • Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636–1636. https://doi.org/10.3389/fmicb.2018.01636

    Article  PubMed  PubMed Central  Google Scholar 

  • de Menezes AB, Lewis E, O'Donovan M, O'Neill BF, Clipson N, Doyle EM (2011) Microbiome analysis of dairy cows fed pasture or total mixed ration diets. FEMS Microbiol Ecol 78(2):256–265

    PubMed  Google Scholar 

  • Derakhshani H, Tun HM, Cardoso FC, Plaizier JC, Khafipour E, Loor JJ (2017) Linking peripartal dynamics of ruminal microbiota to dietary changes and production parameters. Front Microbiol 7:2143–2143. https://doi.org/10.3389/fmicb.2016.02143

    Article  PubMed  PubMed Central  Google Scholar 

  • Desjardins P, Conklin D (2010) Nanodrop microvolume quantitation of nucleic acids. Jove - J Vis Exp 45:e2565. https://doi.org/10.3791/2565

    Article  CAS  Google Scholar 

  • Di Martino P (2018) Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 4(2):274–288. https://doi.org/10.3934/microbiol.2018.2.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson EL, Weimer PJ (2017) Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Appl Microbiol Biotechnol 101(10):4269–4278. https://doi.org/10.1007/s00253-017-8150-7

    Article  CAS  PubMed  Google Scholar 

  • Enishi O, Yoshioka T, Nakashima K, Saeki M, Kawashima TJ (2004) Analysis of in situ ruminal digestive characteristics and nutritive value of pumpkin and carrot juice residue for ruminant feeds. Grassl Sci 50(4):360–365

    CAS  Google Scholar 

  • Firdous R, Gilani AH (2001) Changes in chemical composition of sorghum as influenced by growth stage and cultivar. Asian Austral J Anim 14(7):935–940

    CAS  Google Scholar 

  • Fondevila M, Dehority BA (1996) Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. J Anim Sci 74(3):678–684. https://doi.org/10.2527/1996.743678x

    Article  CAS  PubMed  Google Scholar 

  • Forsberg C, Forano E, Chesson A (2000) Microbial adherence to the plant cell wall and enzymatic hydrolysis. In: Cronje PB (ed) Ruminant physiology: digestion, metabolism, growth and reproduction. Wallingford, UK 79-97

  • Forwood DL, Hooker K, Caro E, Huo Y, Holman DB, Meale SJ, Chaves AVJ (2019) Crop sorghum ensiled with unsalable vegetables increases silage microbial diversity. Front Microbiol 10:2599

    PubMed  PubMed Central  Google Scholar 

  • Getachew G, Putnam DH, De Ben CM, De Peters EJ (2016) Potential of sorghum as an alternative to corn forage. Am J Plant Sci 7(7):1106–1121

    CAS  Google Scholar 

  • Ghorbani GR, Morgavi DP, Beauchemin KA, Leedle JA (2002) Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J Anim Sci 80(7):1977–1985. https://doi.org/10.2527/2002.8071977x

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412. https://doi.org/10.1093/jn/125.6.1401

    Article  CAS  PubMed  Google Scholar 

  • Goto H, Qadis AQ, Kim Y-H, Ikuta K, Ichijo T, Sato S (2016) Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle. J Vet Med Sci 78(10):1595–1600. https://doi.org/10.1292/jvms.16-0211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grilli DJ, Fliegerová K, Kopečný J, Lama SP, Egea V, Sohaefer N, Pereyra C, Ruiz MS, Sosa MA, Arenas GN, Mrázek J (2016) Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet. Anaerobe 42:17–26. https://doi.org/10.1016/j.anaerobe.2016.07.002

    Article  PubMed  Google Scholar 

  • Harrison JJ, Turner RJ, Marques LL, Ceri H (2005) Biofilms: a new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. Am Sci 93(6):508–515

    Google Scholar 

  • Higginbotham G, Mueller S, Bolsen K, DePeters EJ (1998) Effects of inoculants containing propionic acid bacteria on fermentation and aerobic stability of corn silage. J Dairy Sci 81(8):2185–2192

    CAS  Google Scholar 

  • Holman DB, Gzyl KE (2019) A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol Ecol 95(6):fiz072

    CAS  PubMed  Google Scholar 

  • Holzer M, Mayrhuber E, Danner H, Braun R (2003) The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol 21(6):282–287

    CAS  PubMed  Google Scholar 

  • Hurst L, Grundleger J, Stewart K, Vieiro M, Abruzzese L, Duvivier L, Kenny M, Baron M, Little CR (2014) Food loss and its intersection with food security. In: Stewart JGK (ed) Global food security index 2014. The Economist Intelligence Unit Ltd., New York

    Google Scholar 

  • Huws SA, Mayorga O, Theodorou MK, Onime L, Kim EJ, Cookson A, Newbold C, Kingston-Smith AH (2013) Successional colonization of perennial ryegrass by rumen bacteria. Lett Appl Microbiol 56(3):186–196

    CAS  PubMed  Google Scholar 

  • Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess MJ (2018) Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol 9:2161

    PubMed  PubMed Central  Google Scholar 

  • Iqbal MW, Zhang Q, Yang Y, Zou C, Li L, Liang X, Wei S, Lin B (2018) Ruminal fermentation and microbial community differently influenced by four typical subtropical forages in vitro. Anim Nutr 4(1):100–108. https://doi.org/10.1016/j.aninu.2017.10.005

    Article  PubMed  Google Scholar 

  • Jatkauskas J, Vrotniakienė V (2007) Effect of L. plantarum, Pediococcus acidilactici, Enterococcus faecium and L. lactis microbial supplementation of grass silage on the fermentation characteristics in rumen of dairy cows. Vet Zootech-Lith 40(62):29–34

    Google Scholar 

  • Jun HI, Lee CH, Song GS, Kim YS (2006) Characterization of the pectic polysaccharides from pumpkin peel. LWT - Food Sci Technol 39(5):554–561. https://doi.org/10.1016/j.lwt.2005.03.004

    Article  CAS  Google Scholar 

  • Jung HG, Mertens DR, Phillips RL (2011) Effect of reduced ferulate-mediated lignin/arabinoxylan cross-linking in corn silage on feed intake, digestibility, and milk production. J Dairy Sci 94(10):5124–5137. https://doi.org/10.3168/jds.2011-4495

    Article  CAS  PubMed  Google Scholar 

  • Krehbiel CR, Rust SR, Zhang G, Gilliland SE (2003) Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. J Anim Sci 81(14_suppl_2):E120–E132. https://doi.org/10.2527/2003.8114_suppl_2E120x

    Article  Google Scholar 

  • Kudo H, Cheng K-J, Costerton JW (1987) Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can J Anim Sci 33(3):267–272

    CAS  Google Scholar 

  • Laflamme L (1992) Carrot/grass silage as cattle feed. Can J Anim Sci 72(2):441–443

    Google Scholar 

  • Leng R (2014) Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. J Anim Prod Sci 54(5):519–543

    CAS  Google Scholar 

  • Liu J, Zhang M, Xue C, Zhu W, Mao S (2016) Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants. J Dairy Sci 99(12):9668–9681. https://doi.org/10.3168/jds.2016-11398

    Article  CAS  PubMed  Google Scholar 

  • Mamuad LL, Kim SH, Biswas AA, Yu Z, Cho K-K, Kim S-B, Lee K, Lee SS (2019) Rumen fermentation and microbial community composition influenced by live Enterococcus faecium supplementation. AMB Express 9(1):123. https://doi.org/10.1186/s13568-019-0848-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister TA, Bae HD, Jones GA, Cheng K-J (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72(11):3004–3018. https://doi.org/10.2527/1994.72113004x

    Article  CAS  PubMed  Google Scholar 

  • McAllister T, Beauchemin K, Alazzeh A, Baah J, Teather R, Stanford K (2011) The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can J Anim Sci 91(2):193–211

    CAS  Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    CAS  PubMed  PubMed Central  Google Scholar 

  • McSweeney CS, Palmer B, McNeill DM, Krause DO (2001) Microbial interactions with tannins: nutritional consequences for ruminants. Anim Feed Sci Technol 91(1):83–93. https://doi.org/10.1016/S0377-8401(01)00232-2

    Article  CAS  Google Scholar 

  • Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, Kang J-H, Kim T-J, Han NS (2015) In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr Polym 2015(131):50–56. https://doi.org/10.1016/j.carbpol.2015.05.022

    Article  CAS  Google Scholar 

  • Morgan E (2009) Fruit and vegetable consumption and waste in Australia. State Government of Victoria, Victorian Health Promotion Foundation, Victoria

    Google Scholar 

  • Morotomi M, Nagai F, Watanabe Y (2012) Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol 62(1):144–149

    CAS  Google Scholar 

  • Ogunade IM, Jiang Y (2019) PSIX-7 1H NMR-based plasma metabolomics reveals a potential biomarker of aflatoxin ingestion in dairy cows. J Anim Sci 97(Supplement_3):395–396. https://doi.org/10.1093/jas/skz258.789

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Vegan: community ecology package. R package version 2:4–1 https://CRAN.R-project.org/package=vergan

    Google Scholar 

  • Oliver AL, Grant RJ, Pedersen JF, O’Rear J (2004) Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows. J Dairy Sci 87(3):637–644. https://doi.org/10.3168/jds.S0022-0302(04)73206-3

    Article  CAS  PubMed  Google Scholar 

  • Ørskov E, McDonald Y (1979) The estimation of protein degradability in the rumen from determining the digestibility of feeds in the rumen. J Agric Sci 92(2):499–503

    Google Scholar 

  • Pitta DW, Pinchak WE, Indugu N, Vecchiarelli B, Sinha R, Fulford JD (2016) Metagenomic analysis of the rumen microbiome of steers with wheat-induced frothy bloat. Front Microbiol 7(689). https://doi.org/10.3389/fmicb.2016.00689

  • Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, Coutinho PM, Henrissat B, Nelson KE (2010) Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol 60(4):721–729

    PubMed  Google Scholar 

  • Qadis AQ, Goya S, Ikuta K, Yatsu M, Kimura A, Nakanishi S, Sato S (2014) Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves. J Vet Med Sci 76(6):877–885. https://doi.org/10.1292/jvms.14-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene databse project: improved data processing and web-based tools. IEEE Signal Processing Lett 41. https://doi.org/10.1093/nar/gks1219

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna https://www.R-project.org/

    Google Scholar 

  • Ren Q, Si H, Yan X, Liu C, Ding L, Long R, Li Z, Qiu Q (2020) Bacterial communities in the solid, liquid, dorsal, and ventral epithelium fractions of yak (Bos grunniens) rumen. MicrobiologyOpen 9(2):e963

    CAS  PubMed  Google Scholar 

  • Rubino F, Carberry C, Waters SM, Kenny D, McCabe MS, Creevey CJ (2017) Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome. ISME J 11(4):932–944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell JB, Wilson DB (1996) Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J Dairy Sci 79(8):1503–1509. https://doi.org/10.3168/jds.S0022-0302(96)76510-4

    Article  CAS  PubMed  Google Scholar 

  • Salami SA, Valenti B, Bella M, O'Grady MN, Luciano G, Kerry JP, Jones E, Priolo A, Newbold CJ (2018) Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol Ecol 94(5). https://doi.org/10.1093/femsec/fiy061

  • SAS Institute Inc (2019) SAS OnlineDoc® 9.3.1, Edn. SAS Institute Inc. 9.3.1 Edn. SAS Institute Inc., Cary

    Google Scholar 

  • Steen R, Unsworth E, Gracey H, Kennedy S, Anderson R, Kilpatrick DJ (1989) Evaluation studies in the development of a commercial bacterial inoculant as an additive for grass silage: 3. Responses in growing cattle and interaction with protein supplementation. Grass Forage Sci 44(4):381–390

    Google Scholar 

  • Su XL, Tian Q, Zhang J, Yuan XZ, Shi XS, Guo RB, Qiu YL (2014) Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp. Int J Syst Evol Micr 64(9):2986–2991

    CAS  Google Scholar 

  • Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov OJ (2011) The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 6(4):e18814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira NC, Queiroz VAV, Rocha MC, Amorim ACP, Soares TO, Monteiro MAM, de Menezes CB, Schaffert RE, Garcia MAVT, Junqueira RG (2016) Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes. Food Chem 197:291–296. https://doi.org/10.1016/j.foodchem.2015.10.099

    Article  CAS  Google Scholar 

  • Thoetkiattikul H, Mhuantong W, Laothanachareon T, Tangphatsornruang S, Pattarajinda V, Eurwilaichitr L, Champreda V (2013) Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr Microbiol 67(2):130–137. https://doi.org/10.1007/s00284-013-0336-3

    Article  CAS  PubMed  Google Scholar 

  • Tseu RJ, Perna Junior F, Carvalho RF, Sene GA, Tropaldi CB, Peres AH, Rodrigues PHM (2020) Effect of tannins and monensin on feeding behaviour, feed intake, digestive parameters and microbial efficiency of Nellore cows. Ital J Anim Sci 19(1):262–273

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597

    PubMed  Google Scholar 

  • Wadhwa M, Bakshi M, Makkar H (2013) Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products, FAO RAP Publication 2013/04. FAO, Rome

    Google Scholar 

  • Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman (2016) Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Am Soc Microbiol 1(1):e00009–e00015

    Google Scholar 

  • Weinberg ZG, Chen Y, Gamburg M (2004a) The passage of lactic acid bacteria from silage into rumen fluid, in vitro studies. J Dairy Sci 87(10):3386–3397. https://doi.org/10.3168/jds.s0022-0302(04)73474-8

    Article  CAS  PubMed  Google Scholar 

  • Weinberg ZG, Muck RE, Weimer PJ, Chen Y, Gamburg M (2004b) Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Appl Biochem Biotechnol 118(1–3):001–010. https://doi.org/10.1385/abab:118:1-3:001

    Article  CAS  Google Scholar 

  • Williams SD, Shinners KJ (2012) Farm-scale anaerobic storage and aerobic stability of high dry matter sorghum as a biomass feedstock. Biomass Bioenergy 46:309–316. https://doi.org/10.1016/j.biombioe.2012.08.010

    Article  CAS  Google Scholar 

  • Wolin MJ, Miller TL, Stewart CS (1997) Microbe-microbe interactions. Springer Netherlands, Dordrecht, pp 467–491

    Google Scholar 

  • Xie M, Yin J, Nie S (2016) Structure and function of polysaccharide from carrot (Daucus carota), and the change during food processing. Zhongguo Shipin Xuebao 16:1–9. https://doi.org/10.16429/j.1009-7848.2016.04.001

    Article  CAS  Google Scholar 

  • Xin J, Chai Z, Zhang C, Zhang Q, Zhu Y, Cao H, Zhong J, Ji Q (2019) Comparing the microbial community in four stomach of dairy cattle, yellow cattle and three yak herds in Qinghai-Tibetan plateau. Front Microbiol 10:1547–1547. https://doi.org/10.3389/fmicb.2019.01547

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan XT, Yan BY, Ren QM, Dou JJ, Wang WW, Zhang JJ, Zhou JW, Long RJ, Ding LM, Han J, Li ZP, Qiu Q (2018) Effect of slow-release urea on the composition of ruminal bacteria and fungi communities in yak. Anim Feed Sci Technol 244:18–27. https://doi.org/10.1016/j.anifeedsci.2018.07.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Meat & Livestock Australia for their financial support of Daniel Forwood. Also, we would like to thank Kalfresh Pty Ltd. for supplying the carrots used in this study. Finally, the authors thank Genome Quebec for the sequencing and details of the methodology.

Author information

Authors and Affiliations

Authors

Contributions

AVC and SJM conceived and designed experiment. AVC, DLF, EC, EKB and SJM conducted experiments. AVC and DBH analysed data. DBH conducted bioinformatics. DLF and EKB wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Alex V. Chaves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Steers used in this experiment were cared for under the approval and guidance of the University of Queensland Animal Ethics Committee (SAFS/476/17).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 277 kb)

ESM 2

(XLSX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forwood, D.L., Bryce, E.K., Caro, E. et al. Influence of probiotics on biofilm formation and diversity of bacteria colonising crop sorghum ensiled with unsalable vegetables. Appl Microbiol Biotechnol 104, 8825–8836 (2020). https://doi.org/10.1007/s00253-020-10877-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10877-5

Keywords

Navigation