Skip to main content
Log in

Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polymyxins are cationic antimicrobial peptides used as the last-line therapy to treat multidrug-resistant Gram-negative bacterial infections. The bactericidal activity of polymyxins against Gram-negative bacteria relies on the electrostatic interaction between the positively charged polymyxins and the negatively charged lipid A of lipopolysaccharide (LPS). Given that Gram-positive bacteria lack an LPS-containing outer membrane, it is generally acknowledged that polymyxins are less active against Gram-positive bacteria. However, Gram-positive bacteria produce negatively charged teichoic acids, which may act as the target of polymyxins. More and more studies suggest that polymyxins have potential as a treatment for Gram-positive bacterial infection. This mini-review discusses recent advances in the mechanism of the antibacterial activity and resistance of polymyxins in Gram-positive bacteria.

Key Points

• Teichoic acids play a key role in the action of polymyxins on Gram-positive bacteria.

• Polymyxin kills Gram-positive bacteria by disrupting cell surface and oxidative damage.

• Modification of teichoic acids and phospholipids contributes to polymyxin resistance in Gram-positive bacteria.

• Polymyxins have potential as a treatment for Gram-positive bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arendt W, Hebecker S, Jäger S, Nimtz M, Moser J (2012) Resistance phenotypes mediated by aminoacyl-phosphatidylglycerol synthases. J Bacteriol 194:1401–1416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bax HI, de Steenwinkel JE, ten Kate MT, van der Meijden A, Verbon A, Bakker-Woudenberg IA (2015) Colistin as a potentiator of anti-TB drug activity against Mycobacterium tuberculosis. J Antimicrob Chemother 70:2828–2837

    Article  PubMed  CAS  Google Scholar 

  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51

    Article  PubMed  CAS  Google Scholar 

  • Brochmann RP, Toft A, Ciofu O, Briales A, Kolpen M, Hempel C, Bjarnsholt T, Høiby N, Jensen PØ (2014) Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation. Int J Antimicrob Agents 43:140–147

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Santa Maria Jr JP, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336

    Article  PubMed  CAS  Google Scholar 

  • Capra EJ, Laub MT (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66:325–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheung AL, Bayer AS, Yeaman MR, Xiong YQ, Waring AJ, Memmi G, Donegan N, Chaili S, Yang SJ (2014) Site-specific mutation of the sensor kinase GraS in Staphylococcus aureus alters the adaptive response to distinct cationic antimicrobial peptides. Infect Immun 82:5336–5345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins LV, Kristian SA, Weidenmaier C, Faigle M, Van Kessel KPM, Van Strijp JAG, Götz F, Neumeister B, Peschel A (2002) Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis 186:214–219

    Article  PubMed  CAS  Google Scholar 

  • D'Costa VM, Mukhtar TA, Patel T, Koteva K, Waglechner N, Hughes DW, Wright GD, De Pascale G (2012) Inactivation of the lipopeptide antibiotic daptomycin by hydrolytic mechanisms. Antimicrob Agents Chemother 56:757–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debabov DV, Heaton MP, Zhang Q, Stewart KD, Lambalot RH, Neuhaus FC (1996) The D-Alanyl carrier protein in Lactobacillus casei: cloning, sequencing, and expression of dltC. J Bacteriol 178:3869–3876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, Li J, Velkov T (2014) A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot 67:147–151

    Article  CAS  Google Scholar 

  • Dwyer DJ, Kohanski MA, Collins JJ (2009) Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 12:482–489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ernst CM, Peschel A (2011) Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol Microbiol 80:290–299

    Article  PubMed  CAS  Google Scholar 

  • Ernst CM, Peschel A (2019) MprF-mediated daptomycin resistance. Int J Med Microbiol 309:359–363

    Article  PubMed  CAS  Google Scholar 

  • Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G, Kalbacher H, Bayer AS, Kraus D, Peschel A (2009) The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 5:e1000660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ernst CM, Kuhn S, Slavetinsky CJ, Krismer B, Heilbronner S, Gekeler C, Kraus D, Wagner S, Peschel A (2015) The lipid-modifying multiple peptide resistance factor is an oligomer consisting of distinct interacting synthase and flippase subunits. MBio 6:e02340–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ernst CM, Slavetinsky CJ, Kuhn S, Hauser JN, Nega M, Mishra NN, Gekeler C, Bayer AS, Peschel A (2018) Gain-of-function mutations in the phospholipid flippase MprF confer specific daptomycin resistance. MBio 9:e01659–18

    PubMed  PubMed Central  Google Scholar 

  • Evans ME, Feola DJ, Rapp RP (1999) Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant Gram-negative bacteria. Ann Pharmacother 33:960–967

    Article  PubMed  CAS  Google Scholar 

  • Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin Infect Dis 40:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Falord M, Karimova G, Hiron A, Msadek T (2012) GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother 56:1047–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fische W (1994) Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med Microbiol Immunol 183:61–76

    Article  Google Scholar 

  • Grau-Campistany A, Manresa Á, Pujol M, Rabanal F, Cajal Y (2016) Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria. BBA-Biomembranes 1858:333–343

    Article  PubMed  CAS  Google Scholar 

  • Guina T, Yi EC, Wang H, Hackett M, Miller SI (2000) A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 182:4077–4086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heaton MP, Neuhaus FC (1994) Role of the D-alanyl carrier protein in the biosynthesis of D-alanyl-lipoteichoic acid. J Bacteriol 176:681–690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyyryläinen HL, Vitikainen M, Thwaite J, Wu H, Sarvas M, Harwood CR, Kontinen VP, Stephenson K (2000) D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. J Biol Chem 275:26696–26703

    Article  PubMed  Google Scholar 

  • Ito M, Aida T, Koyama Y (1966) Studies on the bacterial formation of a peptide antibiotic, colistin. Part I. On the enyzmatic inactivation of colistin by Bacillus colistinus. Agric Biol Chem 30:1112–1118

    CAS  Google Scholar 

  • Ito-Kagawa M, Koyama Y (1980) Selective cleavage of a peptide antibiotic, colistin by colistinase. J Antibiot (Tokyo) 33:1551–1555

    Article  CAS  Google Scholar 

  • Jeannot K, Bolard A, Plesiat P (2017) Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents 49:526–535

    Article  CAS  PubMed  Google Scholar 

  • Joo HS, Fu CI, Otto M (2016) Bacterial strategies of resistance to antimicrobial peptides. Philos T R Soc B: Biol Sci 371:20150292

    Article  CAS  Google Scholar 

  • Kamar R, Réjasse A, Jéhanno I, Attieh Z, Courtin P, Chapot-Chartier MP, Nielsen-Leroux C, Lereclus D, EL Chamy L, Kallassy M, Sanchis-Borja V (2017) DltX of Bacillus thuringiensis is essential for D-alanylation of teichoic acids and resistance to antimicrobial response in insects. Front Microbiol 8:1437

    Article  PubMed  PubMed Central  Google Scholar 

  • Khattar ZA, Rejasse A, Destoumieux-Garzon D, Escoubas JM, Sanchis V, Lereclus D, Givaudan A, Kallassy M, Nielsen-Leroux C, Gaudriault S (2009) The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol 191:7063–7073

    Article  CAS  Google Scholar 

  • Klein S, Lorenzo C, Hoffmann S, Walther JM, Storbeck S, Piekarski T, Tindall BJ, Wray V, Nimtz M, Moser J (2009) Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Mol Microbiol 71(3):551–565

    Article  PubMed  CAS  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810

    Article  PubMed  CAS  Google Scholar 

  • Kovács M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Brückner R (2006) A functional dlt operon, encoding proteins required for incorporation of D-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188:5797–5805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni ME, Ramos JL (2010) Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64:539–559

    Article  PubMed  CAS  Google Scholar 

  • Kristian SA, Dürr M, Van Strijp JA, Neumeister B, Peschel A (2003) MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect Immun 71:546–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V (2005) D-Alanylation of teichoic acids promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwa A, Kasiakou SK, Tam VH, Falagas ME (2007) Polymyxin B: similarities to and differences from colistin (polymyxin E). Expert Rev Anti-Infect Ther 5:811–821

    Article  PubMed  CAS  Google Scholar 

  • Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21:449–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaPorte DC, Rosenthal KS, Storm DR (1977) Inhibition of Escherichia coli growth and respiration by polymyxin B covalently attached to agarose beads. Biochemistry 16:1642–1648

    Article  PubMed  CAS  Google Scholar 

  • Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL (2006) Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6:589–601

    Article  PubMed  CAS  Google Scholar 

  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007a) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66:1136–1147

    Article  PubMed  CAS  Google Scholar 

  • Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M (2007b) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci U S A 104:9469–9474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YX, Zhong Z, Hou P, Zhang WP, Qian PY (2018) Resistance to nonribosomal peptide antibiotics mediated by D-stereospecific peptidases. Nat Chem Biol 14:381–387

    Article  PubMed  CAS  Google Scholar 

  • Mascher T (2006) Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264:133–144

    Article  PubMed  CAS  Google Scholar 

  • McBride SM, Sonenshein AL (2011) The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology 157:1457–1465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meeske AJ, Sham LT, Kimsey H, Koo BM, Gross CA, Bernhardt TG, Rudner DZ (2015) MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc Natl Acad Sci U S A 112:6437–6442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mogi T, Murase Y, Mori M, Shiomi K, Ōmura S, Paranagama MP, Kita K (2009) Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis. J Biochem 146:491–499

    Article  PubMed  CAS  Google Scholar 

  • Muzamal U, Gomez D, Kapadia F, Golemi-Kotra D (2014) Diversity of two-component systems: insights into the signal transduction mechanism by the Staphylococcus aureus two-component system GraSR. F1000Research 3:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neuhaus FC, Heaton MP, Debabov DV, Zhang Q (1996) The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei. Microb Drug Resist 2:77–84

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Rybtke M, Givskov M, Høiby N, Twetman S, Tolker-Nielsen T (2016) The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. Int J Antimicrob Agents 48:298–304

    Article  PubMed  CAS  Google Scholar 

  • Oku Y, Kurokawa K, Ichihashi N, Sekimizu K (2004) Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 150:45–51

    Article  PubMed  CAS  Google Scholar 

  • Olaitan AO, Morand S, Rolain JM (2014) Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5:643

    Article  PubMed  PubMed Central  Google Scholar 

  • Otto M (2009) Bacterial sensing of antimicrobial peptides. In: Collin M, Schuch R (eds) Bacterial sensing and signaling. Karger, Basel, pp 136–149

    Chapter  Google Scholar 

  • Percy MG, Gründling A (2014) Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 68:81–100

    Article  PubMed  CAS  Google Scholar 

  • Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W (1995) Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 270:15598–15606

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Vuong C, Otto M, Götz F (2000) The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 44:2845–2847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KPM, van Strijp JAG (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poirel L, Jayol A, Nordmann P (2017) Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 30:557–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rabanal F, Grau-Campistany A, Vila-Farrés X, Gonzalez-Linares J, Borràs M, Vila J, Manresa A, Cajal Y (2015) A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity. Sci Rep 5:10558

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichmann NT, Cassona CP, Gründling A (2013) Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology 159:1868–1877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reith J, Mayer C (2011) Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl Microbiol Biotechnol 92:1–11

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Ibba M (2008) RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc Natl Acad Sci U S A 105:4667–4672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy H, Ibba M (2009) Broad range amino acid specificity of RNA-dependent lipid remodeling by multiple peptide resistance factors. J Biol Chem 284:29677–29683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudilla H, Pérez-Guillén I, Rabanal F, Sierra JM, Vinuesa T, Viñas M (2018) Novel synthetic polymyxins kill Gram-positive bacteria. J Antimicrob Chemother 73:3385–3390

    PubMed  CAS  Google Scholar 

  • Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y (2012) D-Alanylation of lipoteichoic acids confers resistance to cationic peptides in Group B Streptococcus by increasing the cell wall density. PLoS Pathog 8:e1002891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sampson TR, Liu X, Schroeder MR, Kraft CS, Burd EM, Weiss DS (2012) Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother 56:5642–5649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Si W, Wang L, Usongo V, Zhao X (2018) Colistin induces S. aureus susceptibility to bacitracin. Front Microbiol 9:2805

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohlenkamp C, Galindo-Lagunas KA, Guan Z, Vinuesa P, Robinson S, Thomas-Oates J, Raetz CRH, Geiger O (2007) The lipid lysyl-phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions. Mol Plant Microbe In 20:1421–1430

    Article  CAS  Google Scholar 

  • Staubitz P, Neumann H, Schneider T, Wiedemann I, Peschel A (2004) MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett 231:67–71

    Article  PubMed  CAS  Google Scholar 

  • Steinbuch KB, Fridman M (2016) Mechanisms of resistance to membrane-disrupting antibiotics in Gram-positive and Gram-negative bacteria. MedChemComm 7:86–102

    Article  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  PubMed  CAS  Google Scholar 

  • Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP (1998) Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol 180:4002–4006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki T, Hayashi K, Fujikawa K (1963) Studies on the chemical structure of colistin. III Enzymatic hydrolysis of colistin. A J Biochem 54:412–418

    PubMed  CAS  Google Scholar 

  • Tochikubo K, Yasuda Y, Kozuka S (1986) Decreased particulate NADH oxidase activity in Bacillus subtilis spores after polymyxin B treatment. Microbiology 132:277–287

    Article  CAS  Google Scholar 

  • Trimble MJ, Mlynárčik P, Kolář M, Hancock RE (2016) Polymyxin: alternative mechanisms of action and resistance. CSH Perspect Med 6:a025288

    Google Scholar 

  • Velkov T, Thompson PE, Nation RL, Li J (2010) Structure-activity relationships of polymyxin antibiotics. J Med Chem 53:1898–1916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wecke J, Perego M, Fischer W (1996) D-alanine deprivation of Bacillus subtilis teichoic acids is without effect on cell growth and morphology but affects the autolytic activity. Microb Drug Resist 2:123–129

    Article  PubMed  CAS  Google Scholar 

  • Wecke J, Madela K, Fischer W (1997) The absence of D-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. Microbiology 143:2953–2960

    Article  CAS  PubMed  Google Scholar 

  • Wood BM, Santa Maria JP, Matano LM, Vickery CR, Walker S (2018) A partial reconstitution implicates DltD in catalyzing lipoteichoic acid D-alanylation. J Biol Chem 293:17985–17996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woods EC, Nawrocki KL, Suárez JM, McBride SM (2016) The Clostridium difficile Dlt pathway is controlled by the extracytoplasmic function sigma factor σV in response to lysozyme. Infect Immun 84:1902–1916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woyczikowska B, Paśś L, Girdwoyń M, Raczyńska-Bojanowska K (1973) Proteolytic degradation of polymyxins by the enzymes of Bacillus polymyxa. Acta Biochim Pol 20:285–296

    PubMed  CAS  Google Scholar 

  • Wydau-Dematteis S, Louis M, Zahr N, Lai-Kuen R, Saubaméa B, Butel MJ, Pons JL (2015) The functional dlt operon of Clostridium butyricum controls the D-alanylation of cell wall components and influences cell septation and vancomycin-induced lysis. Anaerobe 35:105–114

    Article  PubMed  CAS  Google Scholar 

  • Xiong YQ, Mukhopadhyay K, Yeaman MR, Adler-Moore J, Bayer AS (2005) Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrob Agents Chemother 49:3114–3121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang SJ, Bayer AS, Mishra NN, Meehl M, Ledala N, Yeaman MR, Xiong YQ, Cheung AL (2012) The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect Immun 80:74–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin J, Wang G, Cheng D, Fu J, Qiu J, Yu Z (2019) Inactivation of polymyxin by hydrolytic mechanism. Antimicrob Agents Chemother 63:e02378–e02318

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yu Z, Qin W, Lin J, Fang S, Qiu J (2015) Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Res Int 2015:679109

    PubMed  PubMed Central  Google Scholar 

  • Yu Z, Zhu Y, Qin W, Yin J, Qiu J (2017) Oxidative stress induced by polymyxin E is involved in rapid killing of Paenibacillus polymyxa. Biomed Res Int 2017:5437139

    PubMed  PubMed Central  Google Scholar 

  • Yu Z, Zhu Y, Fu J, Qiu J, Yin J (2019a) Enhanced NADH metabolism involves colistin-induced killing of Bacillus subtilis and Paenibacillus polymyxa. Molecules 24:387

    Article  PubMed Central  CAS  Google Scholar 

  • Yu Z, Zhang L, Qin W, Yin J, Qiu J (2019b) Exogenous catalase stimulates the polymyxin E-induced rapid killing of Paenibacillus polymyxa. Int J Pept Res Ther 25:161–168

    Article  CAS  Google Scholar 

Download references

Author contribution statement

YJ and YZ conceived and designed the review. CD, FJ, and LY collected the data. YJ, MQ, LQ, and YZ wrote the manuscript. All authors read and approved the manuscript.

Funding

This research was supported by the grants from Zhejiang Provincial Natural Science Foundation of China (LY20C010003), National Natural Science Foundation of China (31670114), and the National Key R&D Program of China (2017YFC1600100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Meng, Q., Cheng, D. et al. Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Appl Microbiol Biotechnol 104, 3771–3780 (2020). https://doi.org/10.1007/s00253-020-10525-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10525-y

Keywords

Navigation