Skip to main content
Log in

Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing conditions reveals new key cytochromes involved

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Geobacter sulfurreducens is capable of reducing Pd(II) to Pd(0) using acetate as electron donor; however, the biochemical and genetic mechanisms involved in this process have not been described. In this work, we carried out transcriptome profiling analysis to identify the genes involved in Pd(II) reduction in this bacterium. Our results showed that 252 genes were upregulated while 141 were downregulated during Pd(II) reduction. Among the upregulated genes, 12 were related to energy metabolism and electron transport, 50 were classified as involved in protein synthesis, 42 were associated to regulatory functions and transcription, and 47 have no homologs with known function. RT-qPCR data confirmed upregulation of genes encoding PilA, the structural protein for electrically conductive pili, as well as c-type cytochromes GSU1062, GSU2513, GSU2808, GSU2934, GSU3107, OmcH, OmcM, PpcA, and PpcD under Pd(II)-reducing conditions. ΔpilA and ΔpilR mutant strains showed 20% and 40% decrease in the Pd(II)-reducing capacity, respectively, as compared to the wild type strain, indicating the central role of pili in this process. RT-qPCR data collected during Pd(II) reduction also confirmed downregulation of omcB, omcC, omcZ, and omcS genes, which have been shown to be involved in the reduction of Fe(III) and electrodes. The present study contributes to elucidate the mechanisms involved in Pd(II) reduction by G. sulfurreducens.

Graphical Abstract

Key points

• Transcriptome analysis provided evidence on Pd(II) reduction by G. sulfurreducens.

• Results indicate that electrically conductive pili is involved in Pd(II) reduction.

• G. sulfurreducens was not able to grow under Pd(II)-reducing conditions.

• The study contributes to a better understanding of the mechanisms in Pd(II) reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aklujkar M, Coppi MV, Leang C, Kim BC, Chavan MA, Perpetua LA, Giloteaux L, Liu A, Holmes DE (2013) Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiol Read Engl 159:515–535

    Article  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III ) oxide by chemotaxis. Nature 416:767–769

    Article  CAS  PubMed  Google Scholar 

  • Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G (2011) Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci U S A 108:15248–15252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppi MV, Leang C, Sandler SJ, Lovley DR (2001) Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Corte S, Sabbe T, Hennebel T, Vanhaecke L, De Gusseme B, Verstraete W, Boon N (2012) Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions. Water Res 46:2718–2726

    Article  PubMed  CAS  Google Scholar 

  • De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T, Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie Van Leeuwenhoek 90:377–389

    Article  CAS  PubMed  Google Scholar 

  • Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156:2630–2640

    Article  CAS  PubMed  Google Scholar 

  • Ding Y-HR, Hixson KK, Giometti CS, Stanley A, Esteve-Núñez A, Khare T, Tollaksen SL, Zhu W, Adkins JN, Lipton MS, Smith RD, Mester T, Lovley DR (2006) The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim Biophys Acta BBA - Proteins Proteomics 1764:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Ding Y-HR, Hixson KK, Aklujkar MA, Lipton MS, Smith RD, Lovley DR, Mester T (2008) Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor. Biochim Biophys Acta BBA - Proteins Proteomics 1784:1935–1941

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using targetP, SignalP, and related tools. Nat Protoc 2(4):953–971

  • Francis RT, Becker RR (1984) Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. Anal Biochem 136:509–514

    Article  CAS  PubMed  Google Scholar 

  • Gardy JL, Spencer C, Wang K, Ester M, Tusnády GE, Simon I, Hua S, deFays K, Lambert C, Nakai K, Brinkman FSL (2003) PSORT-B: improving protein subcellular localization prediction for gram-negative bacteria. Nucleic Acids Res 31:3613–3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR (2011) Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environ Microbiol Rep 3:211–217

    Article  CAS  PubMed  Google Scholar 

  • Juárez K, Kim B-C, Nevin K, Olvera L, Reguera G, Lovley DR, Methé BA (2009) PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens. J Mol Microbiol Biotechnol 16:146–158

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim B-C, Leang C, Ding Y-HR, Glaven RH, Coppi MV, Lovley DR (2005) OmcF, a putative c-type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens. J Bacteriol 187:4505–4513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leang C, Adams LA, Chin K-J, Nevin KP, Methé BA, Webster J, Sharma ML, Lovley DR (2005) Adaptation to disruption of the electron transfer pathway for Fe (III) reduction in Geobacter sulfurreducens. J Bacteriol 187:5918–5926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TZ, Lee SD, Bhatnagar RS (1979) Toxicity of palladium. Toxicol Lett 4:469–473

    Article  CAS  Google Scholar 

  • Liu Y, Fredrickson JK, Zachara JM, Shi L (2015) Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front Microbiol 6:1075

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods San Diego Calif 25:402–408

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru A-E, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric's physiology, ecology, and practical applications. In: Pole RK (ed) Advances in microbial physiology. Academic Press 59:1–100

  • Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:8634–8641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Methé BA, Webster J, Nevin K, Butler J, Lovley DR (2005) DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:2530–2538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikheenko IP, Rousset M, Dementin S, Macaskie LE (2008) Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains. Appl Environ Microbiol 74:6144–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orellana R, Leavitt JJ, Comolli LR, Csencsits R, Janot N, Flanagan KA, Gray AS, Leang C, Izallalen M, Mester T, Lovley DR (2013) U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79:6369–6374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pat-Espadas AM, Razo-Flores E, Rangel-Mendez JR, Cervantes FJ (2013) Reduction of palladium and production of nano-catalyst by Geobacter sulfurreducens. Appl Microbiol Biotechnol 97:9553–9560

    Article  CAS  PubMed  Google Scholar 

  • Pat-Espadas AM, Razo-Flores E, Rangel-Mendez JR, Cervantes FJ (2014) Direct and quinone-mediated palladium reduction by Geobacter sulfurreducens: mechanisms and modeling. Environ Sci Technol 48:2910–2919

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Mester T, Morgado L, Arakawa T, Sharma ML, Inoue K, Joseph C, Salgueiro CA, Maroney MJ, Lovley DR (2011) Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. Biochim Biophys Acta BBA - Bioenerg 1807:404–412

    Article  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanford RA, Wu Q, Sung Y, Thomas SH, Amos BK, Prince EK, Löffler FE (2007) Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields. Environ Microbiol 9:2885–2893

    Article  CAS  PubMed  Google Scholar 

  • Shelobolina ES, Coppi MV, Korenevsky AA, DiDonato LN, Sullivan SA, Konishi H, Xu H, Leang C, Butler JE, Kim B-C, Lovley DR (2007) Importance of c-type cytochromes for U(VI) reduction by Geobacter sulfurreducens. BMC Microbiol 7:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c -type cytochromes. Mol Microbiol 65:12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JA, Lovley DR, Tremblay P-L (2013) Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol 79:901–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415. 526

    Article  CAS  PubMed  Google Scholar 

  • Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21:2213–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas PE, Ryan D, Levin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75:168–176

    Article  CAS  PubMed  Google Scholar 

  • Ueki T, Lovley DR (2010) Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species. Nucleic Acids Res 38:810–821

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MJ, Wrighton KC, Nicora CD, Williams KH, McCue LA, Handley KM, Miller CS, Giloteaux L, Montgomery AP, Lovley DR, Banfield JF, Long PE, Lipton MS (2013) Fluctuations in species-level protein expression occur during element and nutrient cycling in the subsurface. PLoS One 8:e57819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates MD, Cusick RD, Logan BE (2013) Extracellular palladium nanoparticle production using Geobacter sulfurreducens. ACS Sustain Chem Eng 1:1165–1171

    Article  CAS  Google Scholar 

  • Yi H, Nevin KP, Kim BC, Franks AE, Klimes A, Tender LM, Lovley D (2009) Selection of variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24(12):3498–3503

Download references

Acknowledgments

We thank Raunel Tinoco, Ramiro Baeza Jimenez, Ricardo Grande, and Veronica Jiménez for their technical support. This study was financially supported by CONACYT (Program Frontiers in Science, Grant 1289, and Program Basic Science, Grant 255476). We thank Enrique Morett for critically reading the manuscript. Finally, we greatly acknowledge the support from the national laboratories USMB, LANBAMA, and LINAN for their contribution in sample analyses.

Funding

This study was funded by CONACYT (Program Frontiers in Science, Grant 1289, and Program Basic Science, Grant 255476).

Author information

Authors and Affiliations

Authors

Contributions

FJC, KJ, AHE, and AMPE conceived the study and designed the research. AHE and MHA conducted the experiments. LVA analyzed the data. AHE, AMPE, KJ, and FJC wrote the manuscript with input from all the authors. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Francisco J. Cervantes or Katy Juárez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Eligio, A., Pat-Espadas, A.M., Vega-Alvarado, L. et al. Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing conditions reveals new key cytochromes involved. Appl Microbiol Biotechnol 104, 4059–4069 (2020). https://doi.org/10.1007/s00253-020-10502-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10502-5

Keywords

Navigation