Skip to main content
Log in

Reduction of palladium and production of nano-catalyst by Geobacter sulfurreducens

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The present study is the first report on the ability of Geobacter sulfurreducens PCA to reduce Pd(II) and produce Pd(0) nano-catalyst, using acetate as electron donor at neutral pH (7.0 ± 0.1) and 30 °C. The microbial production of Pd(0) nanoparticles (NPs) was greatly enhanced by the presence of the redox mediator, anthraquinone-2,6-disulfonate (AQDS) when compared with controls lacking AQDS and cell-free controls. A cell dry weight (CDW) concentration of 800 mg/L provided a larger surface area for Pd(0) NPs deposition than a CDW concentration of 400 mg/L. Sample analysis by transmission electron microscopy revealed the formation of extracellular Pd(0) NPs ranging from 5 to 15 nm and X-ray diffraction confirmed the Pd(0) nature of the nano-catalyst produced. The present findings open the possibility for a new alternative to synthesize Pd(0) nano-catalyst and the potential application for microbial metal recovery from metal-containing waste streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afkar E, Reguera G, Schiffer M, Lovley DR (2005) A novel Geo-bacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens. BMC Microbiol 5:41

    Article  PubMed  Google Scholar 

  • Alvarez LH, Cervantes FJ (2011) (Bio)Nanotechnologies to enhance environmental quality and energy production. J Chem Technol Biotechnol 86:1354–1363

    Article  CAS  Google Scholar 

  • Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solutions. Marcel Dekker, New York

    Google Scholar 

  • Bennett JA, Creamer NJ, Deplanche K, Macaskie LE, Shannon IJ, Wood J (2010) Palladium supported on bacterial biomass as a novel heterogeneous catalyst: a comparison of Pd/Al2O3 and bio-Pd in the hydrogenation of 2-pentyne. Chem Eng Sci 65:282–290

    Article  CAS  Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  PubMed  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  PubMed  CAS  Google Scholar 

  • Bratsch SG (1989) Standard electrode potentials and temperature coefficients in water at 298.15 K. J Phys Chem Ref Data 18:1–21

    Article  CAS  Google Scholar 

  • Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stoltz JF, Mclnerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, Duong-Dac T, Ivanova A, Roest K, Akkermans ADL, Lettinga G, Field JA (2003) Selective enrichment of Geobacter sulfurreducens from anaerobic granular sludge with quinones as terminal electron acceptors. Biotechnol Lett 25:39–45

    Article  PubMed  CAS  Google Scholar 

  • Chaplin BP, Reinhard M, Schneider WF, Schüth C, Shapley JR, Strathmann TJ, Werth CJ (2012) Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ Sci Technol 46:3655–3670

    Article  PubMed  CAS  Google Scholar 

  • Coppi MV, Leang C, Sandler SJ, Lovley DR (2001) Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  PubMed  CAS  Google Scholar 

  • De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5:5–17

    Article  PubMed  Google Scholar 

  • De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325

    Google Scholar 

  • De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T, Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie van Leeuwenhoek 90:377–389

    Article  PubMed  CAS  Google Scholar 

  • Ding YH, Hixson KK, Giometti CS, Stanley A, Esteve-Nunez A, Khare T, Tollaksen SL, Zhu W, Adkins JN, Lipton MS, Smith RD, Mester T, Lovley DR (2006) The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim Biophys Acta 1764:1198–1206

    Article  PubMed  CAS  Google Scholar 

  • Eychmuller A (2000) Structure and photophysics of semiconductor nanocrystals. J Phys Chem B 104:6514–6528

    Article  Google Scholar 

  • Forrez I, Carballa M, Finck G, Wick A, Hennebel T, Vanhaecke L, Ternes T, Boon N, Verstraete W (2011) Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. Water Res 45:1763–1773

    Article  PubMed  CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:1–5

    Article  Google Scholar 

  • Hennebel T, De Gusseme B, Boon N, Verstraete W (2009) Biogenic metals in advanced water treatment. Trends Biotechnol 27:90–97

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609

    PubMed  CAS  Google Scholar 

  • Lloyd JR, Sole VA, Van Praagh CV, Lovley DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66:3743–3749

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism–organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    PubMed  CAS  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  PubMed  CAS  Google Scholar 

  • Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen M, Lovley DR (2011) Tunable metallic-like conductivity in microbial nanowires networks. Nat Nanotechnol 6:573–579

    Article  PubMed  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for formation of metal nanoparticles and their application. Appl Environ Microbiol 69:485–492

    CAS  Google Scholar 

  • Meng X, Han KN (1996) The principles and applications of ammonia leaching of metals. A Review. Min Process Extr Metall Rev 16:23–61

    Article  CAS  Google Scholar 

  • Milazzo G, Caroli S, Sharma VK (1978) Tables of standard electrode potentials. Wiley, Chichester

    Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103.1–075103.7

    Google Scholar 

  • Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676

    Article  PubMed  CAS  Google Scholar 

  • Qian X, Reguera G, Mester T, Lovley DR (2007) Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. FEMS Microbiol Lett 277:21–27

    Article  PubMed  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Rotaru AE, Jiang W, Finster K, Skrydstrup T, Meyer RL (2012) Non-enzymatic palladium recovery on microbial and synthetic surfaces. Biotechnol Bioeng 109:1889–1897

    Article  PubMed  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Article  Google Scholar 

  • Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989

    Article  CAS  Google Scholar 

  • Shelobolina ES, Coppi MV, Korenevsky AA, DiDonato LN, Sullivan SA, Konishi H, Xu H, Leang C, Butler JE, Kim BC, Lovley DR (2007) Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens. BMC Microbiol 7:1–15

    Article  Google Scholar 

  • Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27:256–277

    Article  PubMed  Google Scholar 

  • Van Trump JI, Sun Y, Coates JD (2006) Microbial interactions with humic substances. Adv Appl Microbiol 60:55–96

    Article  PubMed  Google Scholar 

  • Von Castein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  Google Scholar 

  • Voordeckers JW, Kim BC, Izallalen M, Lovley DR (2010) Role of Geobacter sulfurreducens outer surface c-Type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. Appl Environ Microbiol 76:2371–2375

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Liu G, Zhou J, Wang J, Jin R, Lv H (2011) Quinone-mediated reduction of selenite and tellurite by Escherichia coli. Bioresour Technol 102:3268–3271

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y, He N, Jia L (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12:1589–1598

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Council of Science and Technology of Mexico (Grant SEP-CONACYT 155656). Pat-Espadas thanks to CONACYT for the PhD fellowship number 221388. Authors also thank Araceli Patron Soberano, Beatriz Rivera, Nicolas Cayetano, Maria del Carmen Rocha, Dulce Partida, and Guillermo Vidriales for their technical support. We thank Dr. Katy Juárez for providing the strain of G. sulfurreducens. Finally, we greatly acknowledge the support from the national laboratories LANBAMA and LINAN for their contribution in sample analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Cervantes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pat-Espadas, A.M., Razo-Flores, E., Rangel-Mendez, J.R. et al. Reduction of palladium and production of nano-catalyst by Geobacter sulfurreducens . Appl Microbiol Biotechnol 97, 9553–9560 (2013). https://doi.org/10.1007/s00253-012-4640-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4640-9

Keywords

Navigation