Applied Microbiology and Biotechnology

, Volume 103, Issue 10, pp 4137–4151 | Cite as

Fungal biotransformation of short-chain n-alkylcycloalkanes

  • Rabea SchlüterEmail author
  • Anja Dallinger
  • Jan Kabisch
  • Ilka Duldhardt
  • Frieder Schauer
Applied microbial and cell physiology


The cycloalkanes, comprising up to 45% of the hydrocarbon fraction, occur in crude oil or refined oil products (e.g., gasoline) mainly as alkylated cyclohexane derivatives and have been increasingly found in environmental samples of soil and water. Furthermore, short-chain alkylated cycloalkanes are components of the so-called volatile organic compounds (VOCs). This study highlights the biotransformation of methyl- and ethylcyclohexane by the alkane-assimilating yeast Candida maltosa and the phenol- and benzoate-utilizing yeast Trichosporon mucoides under laboratory conditions. In the course of this biotransformation, we detected 25 different metabolites, which were analyzed by HPLC and GC-MS. The biotransformation process of methylcyclohexane in both yeasts involve (A) ring hydroxylation at different positions (C2, C3, and C4) and subsequent oxidation to ketones as well as (B) oxidation of the alkyl side chain to hydroxylated and acid products. The yeast T. mucoides additionally performs ring hydroxylation at the C1-position and (C) oxidative decarboxylation and (D) aromatization of cyclohexanecarboxylic acid. Both yeasts also oxidized the saturated ring system and the side chain of ethylcyclohexane. However, the cyclohexylacetic acid, which was formed, seemed not to be substrate for aromatization. This is the first report of several new transformation reactions of alkylated cycloalkanes for eukaryotic microorganisms.


Bioremediation Environmental pollutants Fungi Cycloparaffins Biodegradation Targeted exometabolome 



The authors thank Robert Jack for reviewing the manuscript and Anne Reinhard for excellent technical assistance.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2019_9749_MOESM1_ESM.pdf (174 kb)
ESM 1 (PDF 173 kb)


  1. Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34(12–14):2063–2101. Google Scholar
  2. Awe S, Mikolasch A, Hammer E, Schauer F (2008) Degradation of phenylalkanes and characterization of aromatic intermediates acting as growth inhibiting substances in hydrocarbon utilizing yeast Candida maltosa. Int Biodeterior Biodegrad 62(4):408–414. Google Scholar
  3. Awe S, Mikolasch A, Schauer F (2009) Formation of coumarines during the degradation of alkyl substituted aromatic oil components by the yeast Trichosporon asahii. Appl Microbiol Biotechnol 84(5):965–976. Google Scholar
  4. Babior BM, Bloch K (1966) Aromatization of cyclohexanecarboxylic acid. J Biol Chem 241(16):3643–3651Google Scholar
  5. Baldwin BC, Robinson D, Williams RT (1960) Studies in detoxication. 83. Aromatization of cyclohexanecarboxylic acid in hens. Biochem J 76:600–602Google Scholar
  6. Beam HW, Perry JJ (1974) Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J Bacteriol 118(2):394–399Google Scholar
  7. Beier A, Hahn V, Bornscheuer UT, Schauer F (2014) Metabolism of alkenes and ketones by Candida maltosa and related yeasts. AMB Express 4:75. Google Scholar
  8. Blakley ER (1974) Microbial degradation of cyclohexanecarboxylic acid: a pathway involving aromatization to form p-hydroxybenzoic acid. Can J Microbiol 20(10):1297–1306Google Scholar
  9. Brewster D, Jones RS, Parke DV (1977) Metabolism of cyclohexanecarboxylate in the rat. Biochem J 164(3):595–600Google Scholar
  10. Brzostowicz PC, Walters DM, Jackson RE, Halsey KH, Ni H, Rouviere PE (2005) Proposed involvement of a soluble methane monooxygenase homologue in the cyclohexane-dependent growth of a new Brachymonas species. Environ Microbiol 7(2):179–190. Google Scholar
  11. Chaillan F, Le Flèche A, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):587–595. Google Scholar
  12. Chaîneau CH, Morel JL, Oudot J (1995) Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings. Environ Sci Technol 29(6):1615–1621. Google Scholar
  13. Chamkha M, Trabelsi Y, Mnif S, Sayadi S (2011) Isolation and characterization of Klebsiella oxytoca strain degrading crude oil from a Tunisian off-shore oil field. J Basic Microb 51(6):580–589. Google Scholar
  14. Chrzanowski L, Kaczorek E, Olszanowski A (2005) Relation between Candida maltosa hydrophobicity and hydrocarbon biodegradation. World J Microbiol Biotechnol 21(6–7):1273–1277. Google Scholar
  15. Dallinger A, Duldhardt I, Kabisch J, Schlüter R, Schauer F (2016) Biotransformation of cyclohexane and related alicyclic hydrocarbons by Candida maltosa and Trichosporon species. Int Biodeterior Biodegrad 107:132–139. Google Scholar
  16. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810. Google Scholar
  17. Davis JB, Raymond RL (1961) Oxidation of alkyl-substituted cyclic hydrocarbons by a Nocardia during growth on n-alkanes. Appl Microbiol 9(5):383–388Google Scholar
  18. De Boer TJ, Backer HJ (1956) Diazomethane. Org Synth 36:16–18. Google Scholar
  19. Dutta T (2005) Origin, occurrence, and biodegradation of long-side-chain alkyl compounds in the environment: a review. Environ Geochem Health 27(3):271–284. Google Scholar
  20. Dutta TK, Harayama S (2001) Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp strain MBIC 4326. Appl Environ Microbiol 67(4):1970–1974. Google Scholar
  21. Elliott TH, Tao RCC, Williams RT (1965) Metabolism of methylcyclohexane. Biochem J 95(1):70–76Google Scholar
  22. Fedorak PM, Westlake DWS (1986) Fungal metabolism of n-alkylbenzenes. Appl Environ Microbiol 51(2):435–437Google Scholar
  23. Feinberg EL, Ramage PIN, Trudgill PW (1980) The degradation of normal-alkylcycloalkanes by a mixed bacterial culture. J Gen Microbiol 121(DEC):507–511Google Scholar
  24. Hammer E, Krowas D, Schäfer A, Specht M, Francke W, Schauer F (1998) Isolation and characterization of a dibenzofuran-degrading yeast: identification of oxidation and ring cleavage products. Appl Environ Microbiol 64(6):2215–2219Google Scholar
  25. Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1(1):63–70Google Scholar
  26. Hasegawa Y, Higuchi K, Obata H, Yoshizako F, Nishimura A, Chubachi M, Tokuyama T (1987) Metabolism of cyclohexanecarboxylic acid by Trichosporon cutaneum KUY-6A. Nippon Nogeikagaku Kaishi-J Jpn Soc Biosci Biotechol Agrochem 61(9):1107–1112Google Scholar
  27. Hornei S, Köhler M, Weide H (1972) Das Fettsäurespektrum eines Candida-Stammes nach Kultur auf n-Alkanen (The fatty-acid spectrum of a Candida strain after growth on n-alkanes). Z Allg Mikrobiol 12(1):19–27Google Scholar
  28. Hostettler FD, Kvenvolden KA (2002) Alkylcyclohexanes in environmental geochemistry. Environ Forensic 3(3–4):293–301.
  29. Iwaki H, Nakai E, Nakamura S, Hasegawa Y (2008) Isolation and characterization of new cyclohexylacetic acid-degrading bacteria. Curr Microbiol 57(2):107–110. Google Scholar
  30. Kaneda T, Obata H, Tokumoto M (1993) Aromatization of 4-oxocyclohexanecarboxylic acid to 4-hydroxybenzoic acid by two distinctive desaturases from Corynebacterium cyclohexanicum properties of two desaturases. Eur J Biochem 218(3):997–1003. Google Scholar
  31. Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68(11):5625–5633. Google Scholar
  32. Kawamoto M, Utsukihara T, Abe C, Sato M, Saito M, Koshimura M, Kato N, Horiuchi CA (2008) Biotransformation of (+/−)-2-methylcyclohexanone by fungi. Biotechnol Lett 30(9):1655–1660. Google Scholar
  33. Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung SY, Kubo M (2004) Degradation pathways of cyclic alkanes in Rhodococcus sp NDKK48. Appl Microbiol Biotechnol 66(1):92–99. Google Scholar
  34. Kreisel H, Schauer F (1987) Methoden des mykologischen Laboratoriums. Gustav Fischer Verlag, StuttgartGoogle Scholar
  35. Kung JW, Meier A-K, Mergelsberg M, Boll M (2014) Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway. J Bacteriol 196(20):3667–3674. Google Scholar
  36. Kvenvolden KA, Cooper CK (2003) Natural seepage of crude oil into the marine environment. Geo-Mar Lett 23(3–4):140–146. Google Scholar
  37. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315Google Scholar
  38. Lloyd-Jones G, Trudgill PW (1989) The degradation of alicyclic hydrocarbons by a microbial consortium. Int Biodeterior 25(1–3):197–206. Google Scholar
  39. Meyer SA, Anderson K, Brown RE, Smith MT, Yarrow D, Mitchell G, Ahearn DG (1975) Physiological and DNA characterization of Candida maltosa, a hydrocarbon-utilizing yeast. Arch Microbiol 104(3):225–231. Google Scholar
  40. Mikolasch A, Omirbekova A, Schumann P, Reinhard A, Sheikhany H, Berzhanova R, Mukasheva T, Schauer F (2015) Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan. Appl Microbiol Biotechnol 99(9):4071–4084. Google Scholar
  41. Mikolasch A, Reinhard A, Alimbetova A, Omirbekova A, Pasler L, Schumann P, Kabisch J, Mukasheva T, Schauer F (2016) From oil spills to barley growth—oil-degrading soil bacteria and their promoting effects. J Basic Microbiol 56(11):1252–1273. Google Scholar
  42. Miyazawa M, Okamura S, Yamaguchi M, Kameoka H (2000) Biological stereoselective reduction of 4-methylcyclohexanone and 4-ethylcyclohexanone by anthracnose fungi. J Chem Technol Biotechnol 75(2):143–146.<143::aid-jctb195>;2-z Google Scholar
  43. Moody JD, Freeman JP, Cerniglia CE (1999) Biotransformation of doxepin by Cunninghamella elegans. Drug Metab Dispos 27(10):1157–1164Google Scholar
  44. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2002) Biotransformation of mirtazapine by Cunninghamella elegans. Drug Metab Dispos 30(11):1274–1279. Google Scholar
  45. Murray JR, Scheikowski TA, MacRae IC (1974) Utilization of cyclohexanone and related substances by a Nocardia sp. A Van Leeuw J Microb 40(1):17–24. Google Scholar
  46. Musat F, Wilkes H, Behrends A, Woebken D, Widdel F (2010) Microbial nitrate-dependent cyclohexane degradation coupled with anaerobic ammonium oxidation. ISME J 4(10):1290–1301. Google Scholar
  47. Ooyama J, Foster JW (1965) Bacterial oxidation of cycloparaffinic hydrocarbons. Anton Van Lee J M S 31(1):45–65. Google Scholar
  48. Ougham HJ, Trudgill PW (1978) The microbial metabolism of cyclohexylacetic acid. Biochem Soc Trans 6:1324–1326. Google Scholar
  49. Parnell MJ, Henningsen GM, Hixson CJ, Yu KO, McDonald GA, Serve MP (1988) The metabolism of methylcyclohexane in Fischer 344 rats. Chemosphere 17(7):1321–1327. Google Scholar
  50. Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1992) Fungal metabolism of acenaphthene by Cunninghamella elegans. Appl Environ Microbiol 58(11):3654–3659Google Scholar
  51. Quesnel DM, Bhaskar IM, Gieg LM, Chua G (2011) Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta. Chemosphere 84(4):504–511. Google Scholar
  52. Rios-Hernandez LA, Gieg LM, Suflita JM (2003) Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Appl Environ Microbiol 69(1):434–443. Google Scholar
  53. Roling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68(11):5537–5548. Google Scholar
  54. Rontani JF, Bonin P (1992) Utilization of n-alkyl-substituted cyclohexanes by a marine Alcaligenes. Chemosphere 24(10):1441–1446. Google Scholar
  55. Scheller U, Zimmer T, Becher D, Schauer F, Schunck WH (1998) Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3. J Biol Chem 273(49):32528–32534. Google Scholar
  56. Schlueter R, Roeder A, Czekalski N, Gliesche D, Mikolasch A, Schauer F (2014) Novel mechanisms of biotransformation of p-tert-amylphenol by bacteria and fungi with special degradation abilities and simultaneous detoxification of the disinfectant. Appl Microbiol Biotechnol 98(1):373–384. Google Scholar
  57. Schmitz C, Goebel I, Wagner S, Vomberg A, Klinner U (2000) Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms. Appl Microbiol Biotechnol 54(1):126–132. Google Scholar
  58. Schunck WH, Mauersberger S, Huth J, Riege P, Müller HG (1987) Function and regulation of cytochrome P-450 in alkane-assimilating yeast. 1. Selective inhibition with carbon monoxide in growing cells. Arch Microbiol 147(3):240–244. Google Scholar
  59. Sietmann R, Hammer E, Moody J, Cerniglia CE, Schauer F (2000) Hydroxylation of biphenyl by the yeast Trichosporon mucoides. Arch Microbiol 174(5):353–361. Google Scholar
  60. Sietmann R, Hammer E, Specht M, Cerniglia CE, Schauer F (2001) Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides. Appl Environ Microbiol 67(9):4158–4165. Google Scholar
  61. Sietmann R, Gesell M, Hammer E, Schauer F (2006) Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere 64(4):672–685. Google Scholar
  62. Svardal AM, Scheline RR (1985) The aromatization of cyclohexanecarboxylic acid to hippuric acid—substrate specificity and species differences. Mol Cell Biochem 67(2):171–179. Google Scholar
  63. Taylor DG, Trudgill PW (1978) Metabolism of cyclohexane carboxylic acid by Alcaligenes strain W1. J Bacteriol 134(2):401–411Google Scholar
  64. Tonge GM, Higgins IJ (1974) Microbial metabolism of alicyclic hydrocarbons - growth of Nocardia petroleophila (NCIB9438) on methylcyclohexane. J Gen Microbiol 81(APR):521–524Google Scholar
  65. Townsend GT, Prince RC, Suflita JM (2004) Anaerobic biodegradation of alicyclic constituents of gasoline and natural gas condensate by bacteria from an anoxic aquifer. FEMS Microbiol Ecol 49(1):129–135. Google Scholar
  66. Uzura A, Katsuragi T, Tani Y (2001) Stereoselective oxidation of alkylbenzenes by fungi. J Biosci Bioeng 91(2):217–221. Google Scholar
  67. van der Walt JP, van Kerken AE (1961) The wine yeasts of the Cape. Part V. Studies on the occurrence of Brettanomyces intermedius and Brettanomyces schanderlii. A Van Leeuw 27(1):81–90Google Scholar
  68. Van Hamme JD, Ward OP (2000) Development of a method for the application of solid-phase microextraction to monitor biodegradation of volatile hydrocarbons during bacterial growth on crude oil. J Ind Microbiol Biotechnol 25(3):155–162. Google Scholar
  69. van Ravenswaay Claasen JC, van der Linden AC (1971) Substrate specificity of the paraffin hydroxylase of Pseudomonas aeruginosa. A Van Leeuw 37(3):339–352Google Scholar
  70. Wünsche L, Sattler K, Gradova NB, Meinhold I, Hedlich R, Brendler W, Uhlig H, Rodionova GS, Saikina AI (1981) Composition of the microorganism population in an unprotected fermentation process. Z Allg Mikrobiol 21(6):469–474. Google Scholar
  71. Yoshizako F, Nishimura A, Chubachi M (1994) Identification of algal transformation products from alicyclic ketones. J Ferment Bioeng 77(2):144–147. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rabea Schlüter
    • 1
    Email author
  • Anja Dallinger
    • 1
  • Jan Kabisch
    • 1
  • Ilka Duldhardt
    • 1
  • Frieder Schauer
    • 1
  1. 1.Institute of MicrobiologyUniversity of GreifswaldGreifswaldGermany

Personalised recommendations