Skip to main content
Log in

Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atlas RM (1993) Handbook of microbiological media. CRC Press, Boca Raton

    Google Scholar 

  • Beier RC, Anderson RC, Krueger NA, Edrington TS, Callaway TR, Nisbet DJ (2009) Effect of nitroethane and nitroethanol on the production of indole and 3-methylindole (skatole) from bacteria in swine feces by gas chromatography. J Environ Sci Health Part B 44:613–620

    Article  CAS  Google Scholar 

  • Botalova O, Schwarzbauer J (2011) Geochemical characterization of organic pollutants in effluents discharged from various industrial sources to riverine systems. Water Air Soil Pollut 221:77–98

    Article  CAS  Google Scholar 

  • Choi SH, Kim Y, Oh S, Oh S, Chun T, Kim SH (2013) Inhibitory effect of skatole (3-methylindole) on enterohemorrhagic Escherichia coli O157:H7 ATCC 43894 biofilm formation mediated by elevated endogenous oxidative stress. Lett Appl Microbiol 58:454–461

    Article  Google Scholar 

  • Cook KL, Rothrock MJ, Lovanh N, Sorrell JK, Loughrin JH (2010) Spatial and temporal changes in the microbial community in an anaerobic swine waste treatment lagoon. Anaerobe 16:74–82

    Article  CAS  PubMed  Google Scholar 

  • De la Torre AI, Jiménez JA, Carballo M, Fernandez C, Roset J, Muñoz MJ (2000) Ecotoxicological evaluation of pig slurry. Chemosphere 41:1629–1635

    Article  PubMed  Google Scholar 

  • Deslandes B, Gariépy C, Houde A (2001) Review of microbiological and biochemical effects of skatole on animal production. Livest Prod Sci 71:193–200

    Article  Google Scholar 

  • Diamond JM, Latimer HA, Munkittrick KR, Thorton KW, Bartell SM, Kidd KA (2011) Prioritizing contaminants of emerging concern for ecological screening assessments. Environ Toxicol Chem 30:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Ducey TF, Hunt PH (2013) Microbial community analysis of swine wastewater anaerobic lagoons by next-generation DNA sequencing. Anaerobe 21:50–57

    Article  CAS  PubMed  Google Scholar 

  • Eaton RW, Chapman PJ (1995) Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. J Bacteriol 177:6983–6988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujioka M, Wada H (1968) The bacterial oxidation of indole. Biochim Biophys Acta 158:70–78

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka K, Tanaka K, Ozeki Y, Kanaly RA (2015) Biotransformation of indole by Cupriavidus sp. strain KK10 proceeds through N-heterocyclic- and carbocyclic-aromatic ring cleavage and production of indigoids. Int Biodeterior Biodegrad 97:13–24

    Article  CAS  Google Scholar 

  • Glass K, Ito S, Wilby PR, Sota T, Nakamura A, Bowers CR, Vinther J, Dutta S, Summons R, Briggs DEG, Wakamatsu K, Simon JD (2012) Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc Natl Acad Sci USA 109:10218–10223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu J-D, Berry DF (1991) Degradation of substituted indoles by an indole-degrading methanogenic consortium. Appl Environ Microbiol 57:2622–2627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu J-D, Berry DF (1992) Metabolism of 3-methylindole by a methanogenic consortium. Appl Environ Microbiol 58:2667–2669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu J-D, Fan Y, Shi H (2002) Relationship between structures of substituted indolic compounds and their degradation by marine anaerobic microorganisms. Mar Pollut Bull 45:379–384

    Article  CAS  PubMed  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanaly RA, Watanabe K (2004) Multiple mechanisms contribute to the biodegradation of benzo[a]pyrene by petroleum-derived multicomponent nonaqueous-phase liquids. Environ Toxicol Chem 23:850–856

    Article  CAS  PubMed  Google Scholar 

  • Kanaly RA, Bartha R, Fogel S, Findlay M (1997) Biodegradation of [14C]benzo[a]pyrene added in crude oil to uncontaminated soil. Appl Environ Microbiol 63:4511–4515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanaly RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205–4211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kunihiro M, Ozeki Y, Nogi Y, Hamamura N, Kanaly RA (2013) Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp. strain KK22. Appl Environ Microbiol 79:4410–4420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Wang X, Yin G, Gai Z, Tang H, Ma C, Deng Z, Xu P (2009) New metabolites of dibenzofuran cometabolic degradation by a biphenyl-cultivated Pseudomonas putida strain B6-2. Environ Sci Technol 43:8635–8642

    Article  CAS  PubMed  Google Scholar 

  • Maeda AH, Nishi S, Hatada Y, Ozeki Y, Kanaly RA (2014) Biotransformation of the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry. Microbial Biotechnol 7:114–129

    Article  CAS  Google Scholar 

  • Mermod N, Harayama S, Timmis KN (1986) New route to bacterial production of indigo. Nat Biotechnol 4:321–324

    Article  CAS  Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nolan WE, Hammer CF (1960) Mixed indole dimers, trimers, and their acyl derivatives. J Org Chem 25:1525–1535

    Article  Google Scholar 

  • Powers JC (1968) Mass spectrometry of simple indoles. J Org Chem 33:2044–2050

    Article  CAS  Google Scholar 

  • Quispe CAG, Coronado CJR, Carvalho JA (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sustain Energy Rev 27:475–493

    Article  CAS  Google Scholar 

  • Regal KA, Laws GM, Yuan C, Yost GS, Skiles GL (2001) Detection and characterization of DNA adducts of 3-methylindole. Chem Res Toxicol 14:1014–1024

    Article  CAS  PubMed  Google Scholar 

  • Samul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64:891–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schüssler W, Nitschke L (1999) Death of fish due to surface water pollution by liquid manure or untreated wastewater: analytical preservation of evidence by HPLC. Water Res 33:2884–2887

    Article  Google Scholar 

  • Seo J-S, Keum Y-S, Cho IK, Li QX (2006) Degradation of dibenzothiophene and carbazole by Arthrobacter sp. P1-1. Int Biodeterior Biodegrad 58:36–43

    Article  CAS  Google Scholar 

  • Sharma N, Doerner KC, Alok PC, Choudhary M (2014) Skatole remediation potential of Rhodopseudomonas palustris WKU-KDNS3 isolated from an animal waste lagoon. Lett Appl Microbiol 60:298–306

    Article  Google Scholar 

  • Smith GF, Walters AE (1961) Indoles. Part V: 3-alkylindole dimers. J Chem Soc 940–943

  • Trabue S, Scoggin K, McConnell L, Maghirang R, Razote E, Hatfield J (2011) Identifying and tracking key odorants from cattle feedlots. Atmos Environ 45:4243–4251

    Article  CAS  Google Scholar 

  • Wu JJ, Park S, Hengemuehle SM, Yokoyama MT, Person HL, Gerrish JB, Masten SJ (1999) The use of ozone to reduce the concentration of malodorous metabolites in swine manure slurry. J Agr Eng Res 72:317–327

    Article  Google Scholar 

  • Xu X, Zhang J, Zhang L, Liu W, Weisel CP (2004) Selective detection of monohydroxy metabolites of polycyclic aromatic hydrocarbons in urine using liquid chromatography/triple quadrupole tandem mass spectrometry. Rapid Commun Mass Spectrom 18:2299–2308

    Article  CAS  PubMed  Google Scholar 

  • Yager TJB, Furlong ET, Kolpin DW, Kinney CA, Zaugg SD, Burkhardt MR (2014) Disspiation of contaminants of emerging concern in biosolids applied to nonirrigated farmland in eastern Colorado. J Am Water Resour Assoc 50:343–357

    Article  CAS  Google Scholar 

  • Yan Z, Liu X, Yuan Y, Liao Y, Li X (2013) Deodorization study of the swine manure with two yeast strains. Biotechnol Bioprocess Eng 18:135–143

    Article  CAS  Google Scholar 

  • Yasuhara A (1987) Identification of volatile compounds in poultry manure by gas chromatography-mass spectrometry. J Chromatogr 387:371–378

    Article  CAS  Google Scholar 

  • Yin B, Gu J-D (2006) Aerobic degradation of 3-methylindole by Pseudomonas aeruginosa Gs isolated from mangrove sediment. Hum Ecol Risk Assess 12:248–258

    Article  CAS  Google Scholar 

  • Yin B, Huang L, Gu J-D (2006) Biodegradation of 1-methylindole and 3-methylindole by mangrove sediment enrichment cultures and a pure culture of an isolated Pseudomonas aeruginosa Gs. Water Air Soil Pollut 176:185–199

    Article  CAS  Google Scholar 

  • Yokoyama MT, Carlson JR (1979) Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am J Clin Nutr 32:173–178

    CAS  PubMed  Google Scholar 

  • Zhang W, Wei C, Yan B, Feng C, Zhao G, Lin C, Yuan M, Wu C, Ren Y, Hu Y (2013) Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants. Environ Sci Pollut Res 20:6418–6432

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Yokohama City University Strategic Research Grant, K20002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Kanaly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuoka, K., Ozeki, Y. & Kanaly, R.A. Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10. Biodegradation 26, 359–373 (2015). https://doi.org/10.1007/s10532-015-9739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9739-0

Keywords

Navigation