Applied Microbiology and Biotechnology

, Volume 103, Issue 7, pp 2903–2912 | Cite as

Occurrence, function, and biosynthesis of mycofactocin

  • Richard Ayikpoe
  • Vishnu Govindarajan
  • John A. LathamEmail author


Mycofactocin is a member of the rapidly growing class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. Although the mycofactocin biosynthetic pathway is widely distributed among Mycobacterial species, the structure, function, and biosynthesis of the pathway product remain unknown. This mini-review will discuss the current state of knowledge regarding the mycofactocin biosynthetic pathway. In particular, we focus on the architecture and distribution of the mycofactocin biosynthetic cluster, mftABCDEF, among the Actinobacteria phylum. We discuss the potential molecular and physiological role of mycofactocin. We review known biosynthetic steps involving MftA, MftB, MftC, and MftE and relate them to pyrroloquinoline quinone biosynthesis. Lastly, we propose the function of the remaining putative biosynthetic enzymes, MftD and MftF.


Mycofactocin Peptide modification RiPP Redox cofactor Biosynthesis 


Author contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding information

This study was supported by the National Institutes of Health grants GM124002 to J.A.L.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Ahn SK, Cuthbertson L, Nodwell JR (2012) Genome context as a predictive tool for identifying regulatory targets of the TetR family transcriptional regulators. PLoS One 7:e50562. CrossRefGoogle Scholar
  2. Anthony C (2001) Pyrroloquinoline quinone (PQQ) and quinoprotein enzymes. Antioxid Redox Signal 3:757–774CrossRefGoogle Scholar
  3. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160. CrossRefGoogle Scholar
  4. Ayikpoe R, Salazar J, Majestic B, Latham JA (2018) Mycofactocin biosynthesis proceeds through 3-amino-5-[(p-hydroxyphenyl)methyl]-4,4-dimethyl-2-pyrrolidinone (AHDP); direct observation of MftE specificity toward MftA*. Biochemistry 57:5379–5383. CrossRefGoogle Scholar
  5. Ayikpoe R, Ngendahimana T, Langton M, Bonitatibus S, Walker LM, Eaton SS, Eaton GR, Pandelia ME, Elliott SJ, Latham JA (2019) Spectroscopic and electrochemical characterization of the mycofactocin biosynthetic protein, MftC, provides insight into its redox flipping mechanism. Biochemistry.
  6. Barr I, Latham JA, Iavarone AT, Chantarojsiri T, Hwang JD, Klinman JP (2016) The pyrroloquinoline quinone (PQQ) biosynthetic pathway: demonstration of de novo carbon-carbon cross-linking within the peptide substrate (PqqA) in the presence of the radical SAM enzyme (PqqE) and its peptide chaperone (PqqD). J Biol Chem 291:8877–8884. CrossRefGoogle Scholar
  7. Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O (2008) Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes. J Biol Chem 283:17815–17826. CrossRefGoogle Scholar
  8. Bonnot F, Iavarone AT, Klinman JP (2013) Multistep, eight-electron oxidation catalyzed by the cofactorless oxidase, PqqC: identification of chemical intermediates and their dependence on molecular oxygen. Biochemistry 52:4667–4675CrossRefGoogle Scholar
  9. Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160CrossRefGoogle Scholar
  10. Bruender NA, Bandarian V (2016) The radical S -adenosyl-L-methionine enzyme MftC catalyzes an oxidative decarboxylation of the C-terminus of the MftA peptide. Biochemistry 55:2813–2816. CrossRefGoogle Scholar
  11. Bruender NA, Bandarian V (2017) The creatininase homolog MftE from Mycobacterium smegmatis catalyzes a peptide cleavage reaction in the biosynthesis of a novel ribosomally synthesized post-translationally modified peptide (RiPP). J Biol Chem 292:4371–4381. CrossRefGoogle Scholar
  12. Bruender NA, Wilcoxen J, Britt RD, Bandarian V (2016) Biochemical and spectroscopic characterization of a radical SAM enzyme involved in the formation of a peptide thioether crosslink. Biochemistry 55:2122–2134. CrossRefGoogle Scholar
  13. Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J (2009) Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J Bacteriol 191:6584–6591. CrossRefGoogle Scholar
  14. Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–942. CrossRefGoogle Scholar
  15. Caruso A, Bushin LB, Clark KA, Martinie RJ, Seyedsayamdost MR (2018) A radical approach to enzymatic β-thioether bond formation. J Am Chem Soc 141:990–997. CrossRefGoogle Scholar
  16. Craik DJ, Lee MH, Rehm FBH, Tombling B, Doffek B, Peacock H (2018) Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorg Med Chem 26:2727–2737. CrossRefGoogle Scholar
  17. Cuthbertson L, Nodwell JR (2013) The TetR family of regulators. Microbiol Mol Biol Rev 77:440–475. CrossRefGoogle Scholar
  18. Datta S, Mori Y, Takagi K, Kawaguchi K, Chen ZW, Okajima T, Kuroda S, Ikeda T, Kano K, Tanizawa K, Mathews FS (2001) Structure of a quinohemoprotein amine dehydrogenase with an uncommon redox cofactor and highly unusual crosslinking. Proc Natl Acad Sci U S A 98:14268–14273. CrossRefGoogle Scholar
  19. De Veer SJ, Weidmann J, Craik DJ (2017) Cyclotides as tools in chemical biology. Acc Chem Res 50:1557–1565. CrossRefGoogle Scholar
  20. DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, Rubin EJ, Schnappinger D, Ehrt S, Fortune SM, Sassetti CM, Ioerger TR (2017) Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. MBio 8:e02133–e02116. CrossRefGoogle Scholar
  21. Duquesne S, Destoumieux-Garzón D, Zirah S, Goulard C, Peduzzi J, Rebuffat S (2007) Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem Biol 14:793–803. CrossRefGoogle Scholar
  22. Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, Fontaine L, Hols P, Leblond-Bourget N, Monnet V, Gardan R (2011) Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in Streptococci. Mol Microbiol 80:1102–1119. CrossRefGoogle Scholar
  23. Flühe L, Knappe TA, Gattner MJ, Schäfer A, Burghaus O, Linne U, Marahiel MA (2012) The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol 8:350–357. CrossRefGoogle Scholar
  24. Flühe L, Burghaus O, Wieckowski BM, Giessen TW, Linne U, Marahiel MA (2013) Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor. J Am Chem Soc 135:959–962. CrossRefGoogle Scholar
  25. Gliese N, Khodaverdi V, Görisch H (2010) The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa. Arch Microbiol 192:1–14. CrossRefGoogle Scholar
  26. Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80CrossRefGoogle Scholar
  27. Goosen N, Huinen RGM, Van de Putte P (1992) A 24-amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone. J Bacteriol 174:1426–1427CrossRefGoogle Scholar
  28. Griffin JE, Gawronski JD, DeJesus MA, Ioerger TR, Akerley BJ, Sassetti CM (2011) High-resolution phenotypic profiling defines genes essential for Mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251. CrossRefGoogle Scholar
  29. Haft DH (2011) Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners. BMC Genomics 12:21. CrossRefGoogle Scholar
  30. Haft DH, Basu MK (2011) Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J Bacteriol 193:2745–2755. CrossRefGoogle Scholar
  31. Haft DH, Pierce PG, Mayclin SJ, Sullivan A, Gardberg AS, Abendroth J, Begley DW, Phan IQ, Staker BL, Myler PJ, Marathias VM, Lorimer DD, Edwards TE (2017) Mycofactocin-associated mycobacterial dehydrogenases with non-exchangeable NAD cofactors. Sci Rep 7:41074. CrossRefGoogle Scholar
  32. Havarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240. CrossRefGoogle Scholar
  33. Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2015) Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res:150616140153005.
  34. Houck DR, Hanners JL, Unkefer CJ (1988) Biosynthesis of pyrroloquinoline quinone. Identification of biosynthetic precursors using 13C labeling and NMR spectroscopy. J Am Chem Soc 110:6920–6921CrossRefGoogle Scholar
  35. Hudson GA, Mitchell DA (2018) RiPP antibiotics: biosynthesis and engineering potential. Curr Opin Microbiol 45:61–69. CrossRefGoogle Scholar
  36. Ibrahim M, Guillot A, Wessner F, Algaron F, Besset C, Courtin P, Gardan R, Monnet V (2007) Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? J Bacteriol 189:8844–8854. CrossRefGoogle Scholar
  37. Khaliullin B, Aggarwal P, Bubas M, Eaton GR, Eaton SS, Latham JA (2016) Mycofactocin biosynthesis: modification of the peptide MftA by the radical S-adenosylmethionine protein MftC. FEBS Lett 590:2538–2548. CrossRefGoogle Scholar
  38. Khaliullin B, Ayikpoe R, Tuttle M, Latham JA (2017) Mechanistic elucidation of the mycofactocin-biosynthetic radical-S-adenosylmethionine protein, MftC. J Biol Chem 292:13022–13033. CrossRefGoogle Scholar
  39. Klinman JP, Bonnot F (2014) The intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ and LTQ. Chem Rev 114:4343–4365. CrossRefGoogle Scholar
  40. Lagedroste M, Smits SHJ, Schmitt L (2017) Substrate specificity of the secreted nisin leader peptidase NisP. Biochemistry 56:4005–4014. CrossRefGoogle Scholar
  41. Latham JA, Iavarone AT, Barr I, Juthani PV, Klinman JP (2015) PqqD is a novel peptide chaperone that forms a ternary complex with the radical S-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. J Biol Chem 290:12908–12918. CrossRefGoogle Scholar
  42. Latham JA, Barr I, Klinman JP (2017) At the confluence of ribosomally synthesized peptide modification and radical S-adenosylmethionine (SAM) enzymology. J Biol Chem 292:16397–16405. CrossRefGoogle Scholar
  43. Magnusson OT, Toyama H, Saeki M, Schwarzenbacher R, Klinman JP (2004) The structure of a biosynthetic intermediate of pyrroloquinolinequinone (PQQ) and elucidation of the final step of PQQ biosynthesis. J Am Chem Soc 126:5342–5343. CrossRefGoogle Scholar
  44. Magnusson OT, RoseFigura JM, Toyama H, Schwarzenbacher R, Klinman JP (2007) Pyrroloquinoline quinone biogenesis: characterization of PqqC and its H84N and H84A active site variants. Biochemistry 46:7174–7186. CrossRefGoogle Scholar
  45. Minch KJ, Rustad TR, Peterson EJR, Winkler J, Reiss DJ, Ma S, Hickey M, Brabant W, Morrison B, Turkarslan S, Mawhinney C, Galagan JE, Price ND, Baliga NS, Sherman DR (2015) The DNA-binding network of Mycobacterium tuberculosis. Nat Commun 6:1–10. CrossRefGoogle Scholar
  46. Nakai T, Ito H, Kobayashi K, Takahashi Y, Hori H, Tsubaki M, Tanizawa K, Okajima T (2015) The radical S-adenosyl-L-methionine enzyme QhpD catalyzes sequential formation of intra-protein sulfur-to-methylene carbon thioether bonds. J Biol Chem 290:11144–11166. CrossRefGoogle Scholar
  47. Ongpipattanakul C, Nair SK (2018) Biosynthetic proteases that catalyze the macrocyclization of ribosomally synthesized linear peptides. Biochemistry 57:3201–3209. CrossRefGoogle Scholar
  48. Ortega MA, van der Donk WA (2016) New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chem Biol 23:31–44. CrossRefGoogle Scholar
  49. Ortega MA, Velásquez JE, Garg N, Zhang Q, Joyce RE, Nair SK, Van Der Donk WA (2014) Substrate specificity of the lanthipeptide peptidase ElxP and the oxidoreductase ElxO. ACS Chem Biol 9:1718–1725. CrossRefGoogle Scholar
  50. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105:4376–4380CrossRefGoogle Scholar
  51. Phelan RW, Barret M, Cotter PD, O’Connor PM, Chen R, Morrissey JP, Dobson ADW, O’Gara F, Barbosa TM (2013) Subtilomycin: a new lantibiotic from Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans. Mar Drugs 11:1878–1898. CrossRefGoogle Scholar
  52. Puehringer S, Metlitzky M, Schwarzenbacher R (2008) The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem 9:8. CrossRefGoogle Scholar
  53. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100:12989–12994. CrossRefGoogle Scholar
  54. Schramma KR, Seyedsayamdost MR (2017) Lysine-tryptophan-crosslinked peptides produced by radical SAM enzymes in pathogenic Streptococci. ACS Chem Biol 12:922–927. CrossRefGoogle Scholar
  55. Schramma KR, Bushin LB, Seyedsayamdost MR (2015) Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat Chem 7:431–437. CrossRefGoogle Scholar
  56. Shen Y-Q, Bonnot F, Imsand EM, RoseFigura JM, Sjölander K, Klinman JP (2012) Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51:2265–2275. CrossRefGoogle Scholar
  57. Soucy SM, Huang J, Gogarten JP (2015) Horizontal gene transfer: building the web of life. Nat Rev Genet 16:472–482CrossRefGoogle Scholar
  58. Stahl DA, Urbance JW (1990) The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol 172:116–124. CrossRefGoogle Scholar
  59. Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, Entian KD (2002) Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184:1703–1711. CrossRefGoogle Scholar
  60. Toyama H, Chistoserdoval L, Lidstrom ME (1997) Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate. Microbiology 143:595–602CrossRefGoogle Scholar
  61. Tu X, Latham JA, Klema VJ, Evans RL, Li C, Klinman JP, Wilmot CM (2017) Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida. J Biol Inorg Chem 22:1089–1097. CrossRefGoogle Scholar
  62. Van Der Werf MJMJ, Van Der Ven C, Barbirato F, Eppink MHM, De Bont JAM, Van Berkel WJH (1999) Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14. A novel nicotinoprotein belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem 274:26296–26304. CrossRefGoogle Scholar
  63. Veltrop JS, Sellink E, Meulenberg JJM, David S, Bulder I, Postma W (1995) Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol 177:5088–5098CrossRefGoogle Scholar
  64. Wecksler SR, Stoll S, Iavarone AT, Imsand EM, Tran H, Britt RD, Klinman JP (2010) Interaction of PqqE and PqqD in the pyrroloquinoline quinone (PQQ) biosynthetic pathway links PqqD to the radical SAM superfamily. Chem Commun 46:7031–7033. CrossRefGoogle Scholar
  65. Wei Q, Ran T, Ma C, He J, Xu D, Wang W (2016) Crystal structure and function of PqqF protein in the pyrroloquinoline quinone biosynthetic pathway. J Biol Chem 291:15575–15587. CrossRefGoogle Scholar
  66. Wieckowski BM, Hegemann JD, Mielcarek A, Boss L, Burghaus O, Marahiel MA (2015) The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation. FEBS Lett 589:2–6. CrossRefGoogle Scholar
  67. Wilburn KM, Fieweger RA, VanderVen BC (2018) Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog Dis 76:1–14. CrossRefGoogle Scholar
  68. Zheng G, Hehn R, Zuber P (2000) Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182:3266–3273. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of DenverDenverUSA

Personalised recommendations