Skip to main content
Log in

Peroxy steroids derived from plant and fungi and their biological activities

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Peroxides represent a large and interesting group of biologically active natural compounds. All these metabolites contain a peroxide group (R-O-O-R). This review describes studies of more than 60 peroxides isolated from plants and fungi. Most of the plant peroxy steroids exhibit high antiprotozoal (Plasmodium) activity with a confidence of up to 95%, while steroids harvested from fungi show more antineoplastic activity with a confidence of up to 94%. In addition, more than 20 different activities of both groups of peroxides with a probability of 78 to 90% have also been predicted using computer program PASS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ananikov VP, Khemchyan LL, Ivanova YV, Bukhtiyarov VI, Sorokin AM (2014) Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russ Chem Rev 83(10):885–985

    Article  CAS  Google Scholar 

  • Asai T, Hara N, Fujimoto Y (2010) Fatty acid derivatives and dammarane triterpenes from the glandular trichome exudates of Ibicella lutea and Proboscidea louisiana. Phytochemistry 71:877–794

    Article  PubMed  CAS  Google Scholar 

  • Bar FMA, Zaghloul AM, Bachawal SV, Sylvester PW, Ahmad KF, El Sayed KA (2008) Antiproliferative triterpenes from Melaleuca ericifolia. J Nat Prod 71:1787–1792

    Article  PubMed  CAS  Google Scholar 

  • Barlow RB (1979-1980) Structure-activity relationships. Trends Pharmacol Sci 1(1):109–111

    Article  CAS  Google Scholar 

  • Bezhentsev VM, Druzhilovskiy DS, Ivanov SM, Filimonov DA, Sastry GN, Poroikov VV (2017) Web resources for discovery and development of new medicines. Pharm Chem J 51(2):91–99

    Article  CAS  Google Scholar 

  • Bok JW, Lermer L, Chilton J, Klingeman GH, Towers N (1999) Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51:891–898

    Article  PubMed  CAS  Google Scholar 

  • Cabrera GM, Seldes AM (1995) Hydroperoxycycloartanes from Tillandsia recurvata. J Nat Prod 58:1920–1924

    Article  Google Scholar 

  • Casteel DA (1992) Peroxy natural products. Nat Prod Rep 9:289–312

    Article  PubMed  CAS  Google Scholar 

  • Casteel DA (1999) Peroxy natural products. Nat Prod Rep 16:55–73

    Article  Google Scholar 

  • Chen JJ, Fei DQ, Chen SG, Gao K (2008) Antimicrobial triterpenoids from Vladimiria muliensis. J Nat Prod 71:547–550

    Article  PubMed  CAS  Google Scholar 

  • Chen JX, Chen JC, Sun Y, Yan YX, Kong LM, Li Y, Qiu MH (2011) Five new diarylpropan-1-ols from Combretum yunnanense. Planta Med 77:1841–1844

    Article  PubMed  CAS  Google Scholar 

  • Chiamg YM, Kuo YH (2001) New peroxy triterpenes from the aerial roots of Ficus microcarpa. J Nat Prod 64:436–439

    Article  CAS  Google Scholar 

  • Chiang YM, Kuo YH (2008) Taraxastane-type triterpenes from the aerial roots of Ficus microcarpa. J Nat Prod 63:898–901

    Article  CAS  Google Scholar 

  • Cirigliano AM, Veleiro AS, Oberti JC, Burton G (2002) Spiranoid withanolides from Jaborosa odonelliana. J Nat Prod 65:1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Clark DE (2001) Peroxides and peroxide forming compounds. Chem Health Saf 8:12–22

    Article  CAS  Google Scholar 

  • Comyns AE (1996) Peroxides and peroxide compounds, inorganic peroxides. In: Kirk-Othmer encyclopedia of chemical technology. Wiley

  • Della Greca M, Fiorentino A, Molinaro A, Monaco P, Previtera L (1994) Hydroperoxysterols in Arum italicum. Nat Prod Lett 5:7–14

    Article  CAS  Google Scholar 

  • Dembitsky VM (1992) Lipids of lichens. Prog Lipid Res 31(4):373–397

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35(1):1–51

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM (2003) Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases. Tetrahedron 59(26):4701–4720

    Article  CAS  Google Scholar 

  • Dembitsky VM (2008a) Bioactive peroxides as potential therapeutic agents. Eur J Med Chem 43(2):223–251

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM (2008b) Bioactive cyclobutane-containing alkaloids. J Nat Med 62(1):1–33

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM (2014) Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 21(12):1559–1581

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM (2015a) Bioactive fungal endoperoxides. Med Mycol 1(5):1–7

    Google Scholar 

  • Dembitsky VM (2015b) Astonishing diversity of natural peroxides as potential therapeutic agents. J Mol Genet Med 9:1–18

    Google Scholar 

  • Dembitsky VM (2017a) The multiple properties of some of the lichenized ascomycetes: biological activity and active metabolites. In: Plant adaptation strategies in changing environment. Springer Verlag: Singapore. Chapter 8, pp. 201–234

  • Dembitsky VM (2017b) Paradigm shifts in fungal secondary metabolite research: unusual fatty acids incorporated into fungal peptides. Int J Current Res Biosci Plant Biol 4(12):7–29

    Article  Google Scholar 

  • Dembitsky VM, Gloriozova TA (2017) Naturally occurring boron containing compounds and their biological activities. Journal of Natural Products and Resources (India) 3(2):147–154

  • Dembitsky VM, Levitsky DO (2004) Arsenolipids. Prog Lipid Res 43(5):403–448

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM, Srebnik M (2002) Natural halogenated fatty acids: their analogues and derivatives. Prog Lipid Res 41(4):315–367

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA, Shustov MV (1991) Identification of fatty acids from Cladonia lichens. Phytochemistry 30(12):4015–4018

    Article  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA, Shustov MV (1992) Fatty acid composition of Parmelia lichens. Phytochemistry 31(3):841–843

    Article  Google Scholar 

  • Dembitsky VM, Gloriozova TA, Poroikov VV (2007) Natural peroxy anticancer agents. Mini-Rev Med Chem 7(6):571–589

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky V, Shkrob I, Hanus LO (2008) Ascaridole and related peroxides from the genus Chenopodium. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152(2):209–215

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM, Al Quntar AAA, Srebnik M (2011) Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev 111(1):209–237

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Liang C, Kim JH, Lee YM, Hyun JH, Kang HK, Kim JA, Min BS, Kim YH (2010) Triterpene compounds isolated from Acer mandshuricum and their anti-inflammatory activity. Bioorg Med Chem Lett 20:1528–1531

    Article  PubMed  CAS  Google Scholar 

  • Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskiy DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457

    Article  CAS  Google Scholar 

  • Filimonov DA, Druzhilovskiy DS, Lagunin AA, Gloriozova TA, Rudik AV, Dmitriev AV, Pogodin PV, Poroikov VV (2018) Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biom Chem Res Method 1(1):e00004

    Article  Google Scholar 

  • Fischer FG, Magerlein H (1960) Zur natürlichen Photooxydation von Sterinen. Ein Stigmastentriol und ein Hydroperoxy-stigmastendiol in den Blättern der Rosskastanie. Liebigs Ann Chem 636:88–94

    Article  CAS  Google Scholar 

  • Goel RK, Gawande DY, Lagunin AA, Poroikov V (2018) Pharmacological repositioning of Achyranthes aspera as antidepressant using pharmacoinformatic tools PASS and PharmaExpert: a case study with wet lab validation. SAR QSAR Environ Res 29(1):69–81

    Article  PubMed  CAS  Google Scholar 

  • Green BJ, Beezhold DH (2011) Industrial fungal enzymes: an occupational allergen perspective. J Allergy 682574:1–11. https://doi.org/10.1155/2011/682574

    Article  CAS  Google Scholar 

  • He F, Pu JX, Huang SX, Wang YY, Xiao WL, Li LM, Liu JP, Zhang HB, Li Y, Sun HD (2010) Schinalactone A, a new cytotoxic triterpenoid from Schisandra sphenanthera. Org Lett 12:1208–1211

    Article  PubMed  CAS  Google Scholar 

  • Herz W, Watanabe K, Kulanthaivel P, Blount JF (1985) Cycloartanes from Lindheimera texana. Phytochemistry 24:2645–2654

    Article  CAS  Google Scholar 

  • Huang HC, Liaw CC, Yang HL, Hseu YC, Kuo HT (2012) Lanostane triterpenoids and sterols from Antrodia camphorata. Phytochemistry 84:177–183

    Article  PubMed  CAS  Google Scholar 

  • Inada A, Murata K, Inatomi Y, Nakanishi T, Darnaed D (1997) Pregnanes and triterpenoid hydroperoxides from the leaves of Aglaia grandis. Phytochemistry 45:1225–1228

    Article  CAS  Google Scholar 

  • Ismail FMD, Levitsky DO, Dembitsky VM (2009) Aziridine alkaloids as potential therapeutic agents. Eur J Med Chem 44(9):3373–3387

    Article  PubMed  CAS  Google Scholar 

  • Jefford CW (2012) Synthetic peroxides as potent antimalarials. News and views. Curr Top Med Chem 12(5):373–399

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Frei B, Heinrich M, Sticher O (1996) Antibacterial hydroperoxysterols from Xanthosoma robustum. Phytochemistry 41:1191–1195

    Article  PubMed  CAS  Google Scholar 

  • Khursan S, Antonovsky V (2005) Physical chemistry of organic peroxides. Taylor & Francis, Milton Park, p 550

    Google Scholar 

  • Klussmann M (2018) Alkenyl and aryl peroxides. Chemistry 24(18):4480–4496

    Article  PubMed  CAS  Google Scholar 

  • Kuklev DV, Domb AJ, Dembitsky VM (2013) Bioactive acetylenic metabolites. Phytomedicine 20(13):1145–1159

    Article  PubMed  CAS  Google Scholar 

  • Kyasa SK (2015) New methods for synthesis of organic peroxides and application of peroxide electrophiles to synthesis of functionalized ethers. Dissertation. University of Nebraska-Lincoln

  • Lagunin AA, Goel RK, Gawande DY, Priynka P, Gloriozova TA, Dmitriev AV, Ivanov SM, Rudik AV, Konova VI, Pogodin PV, Druzhilovsky DS, Poroikov VV (2014) Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep 31(11):1585–1611

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Cuendet M, Axelrod F, Chavez PI, Fong HHS, Pezzuto JM, Kinghorn AD (2001) Novel 29-nor-3,4-seco-cycloartane triterpene methyl esters from the aerial parts of Antirhea acutata. Tetrahedron 57:7107–7112

    Article  CAS  Google Scholar 

  • Liu DZ, Liu JK (2013) Peroxy natural products. Nat Prod Bioprospect 3(5):161–206

    Article  PubMed Central  CAS  Google Scholar 

  • Liu D, Li XM, Li CS, Wang BG (2013) Nigerasterols A and B, antiproliferative sterols from the mangrove-derived endophytic fungus Aspergillus niger MA-132. Helv Chim Acta 96(6):1055–1061

    Article  CAS  Google Scholar 

  • Ma YP, Li N, Gao J, Fu KL, Qin Y, Li GY, Wang JH (2011) A new peroxy-multiflorane triterpene ester from the processed seeds of Trichosanthes kirilowii. Helv Chim Acta 94:1881–1887

    Article  CAS  Google Scholar 

  • Makino B, Kawai M, Iwata Y, Yamamura H, Butsugan Y, Ogawa K, Hayashi M (1995) Physalins possessing an endoperoxy structure from Physalis alkekengi var. francheti. Structural revision of physalin K. Bull Chem Soc Jpn 68:219–223

    Article  CAS  Google Scholar 

  • Mallavadhani UV, Sudhakar AVS, Satyanarayana KVS, Mahapatra A, Li W, Van Breemen RB (2006) Chemical and analytical screening of some edible mushrooms. Food Chem 95(7):58–64

    Article  CAS  Google Scholar 

  • Merdivan S, Lindequist U (2017) Ergosterol peroxide: a mushroom-derived compound with promising biological activities—a review. Int J Med Mushrooms 19(2):93–105

    Article  PubMed  Google Scholar 

  • Miao FP, Li XD, Liu XH, Cichewicz RH, Ji NY (2012) Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs 10:131–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murtazalieva KA, Druzhilovskiy DS, Goel RK, Sastry GN, Poroikov VV (2017) How good are publicly available web services that predict bioactivity profiles for drug repurposing? SAR QSAR Environ Res 28(10):843–862

    Article  PubMed  CAS  Google Scholar 

  • Nakatani N, Kikuzaki H, Yamaji H, Yoshio K, Kitora C, Okada K, Padolina WG (1994) Labdane diterpenes from rhizomes of Hedychium coronarium. Phytochemistry 37:1383–1388

    Article  CAS  Google Scholar 

  • Öksüz S, Gil RR, Chai H, Pezzuto JM, Cordell GA, Ulubelen A (1994) Biologically active compounds from the Euphorbiaceae. 2. Two triterpenoids of Euphorbia cyparissias. Planta Med 60:594–595

    Article  PubMed  Google Scholar 

  • Østergaard LH, Olsen HS (2011) Industrial applications of fungal enzymes. In: Hofrichter M (ed) Industrial applications. Springer, Berlin

    Google Scholar 

  • Rocha MR, de Souza JJ, Barcellos LT, Sant'Anna CM, Braz-Filho R, Vieira IJ (2014) A novel 3,9-(1,2,3-trioxocine)-type steroid of Rauia nodosa (Rutaceae). Molecules 19(9):14637–14648

    Article  PubMed  CAS  Google Scholar 

  • Saha B, Naskar DB, Misra DR, Pradhan BP, Khastgir HN (1977) Baccatin, a novel nor-triterpene peroxide isolated from Sapium baccatum roxb. Tetrahedron Lett 18(35):3095–3098

    Article  Google Scholar 

  • Serebryakov EP, Simolin AV, Kucherov VF, Rosynov BV (1970) New metabolites of Fusarium moniliforme sheld. Tetrahedron 26:5215–5219

    Article  CAS  Google Scholar 

  • Shi XW, Li XJ, Gao JM, Zhang XC (2011) Fasciculols H and I, two lanostane derivatives from Chinese mushroom Naematoloma fasciculare. Chem Biodivers 8:1864–1870

    Article  PubMed  CAS  Google Scholar 

  • Song QY, Jiang K, Zhao QQ, Gao K, Jin XJ, Yao XJ (2013) Eleven new highly oxygenated triterpenoids from the leaves and stems of Schisandra chinensis. Org Biomol Chem 11:251–258

    Google Scholar 

  • Sy LK, Brown GD (1997) Labdane diterpenoids from Alpinia chinensis. J Nat Prod 60:904–908

    Article  CAS  Google Scholar 

  • Tan JM, Qiu YH, Tan XQ, Tan CH (2011) Three new peroxy triterpene lactones from Pseudolarix kaempferi. Helv Chim Acta 94:1697–1702

    Article  CAS  Google Scholar 

  • Terent'ev AO, Platonov MM, Levitsky DO, Dembitsky VM (2011) Organosilicon and organogermanium peroxides: synthesis and reactions. Russ Chem Rev 80(9):807–828

    Article  CAS  Google Scholar 

  • Terent'ev AO, Borisov DA, Vil' VA, Dembitsky VM (2014) Synthesis of five- and six-membered cyclic organic peroxides: key transformations into peroxide ring-retaining products. Beilstein J Org Chem 10:34–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchiyama T, Hara S, Makino M, Fujimoto Y (2002) Seco-Adianane-type triterpenoids from Dorstenia brasiliensis (Moraceae). Phytochemistry 60(8):761–764

    Article  PubMed  CAS  Google Scholar 

  • Van Der Vijver LM (1974) Distribution of plumbag in in the Plumbaginaceae. Phytochemistry. 11:3247–3248

  • Vazdekis NEJ, Chavez H, Estevez-Braun A, Ravelo AG (2009) Triterpenoids and a lignan from the aerial parts of Maytenus apurimacensis. J Nat Prod 72:1045–1048

    Article  PubMed  CAS  Google Scholar 

  • Vil' VA, Yaremenko IA, Ilovaisky AI, Terent'ev AO (2017) Peroxides with anthelmintic, antiprotozoal, fungicidal and antiviral bioactivity: properties, synthesis and reactions. Molecules 22(11):1881. https://doi.org/10.3390/molecules22111881

    Article  CAS  Google Scholar 

  • Wang F, Fang Y, Zhang M, Lin A, Zhu T, Gu Q, Zhu W (1991) Six new ergosterols from the marine-derived fungus Rhizopus sp. Comp Biochem Physiol 100B(3):647–651

    Google Scholar 

  • Wang P, Qin HL, Zhang L, Li ZH, Wang YH, Zhu HB (2004) Steroids from the roots of Cynanchum stauntonii. Planta Med 70(11):1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Wautie A (1946) Prophylaxis and treatment of the chief parasitic diseases of the gastrointestinal tract of the horse. Parasitica 2:44–67

    CAS  Google Scholar 

  • Wu QX, Liu X, Shi YP (2007) Chemical components from Gentiana aristata. Chem Biodivers 4:175–182

    Article  PubMed  CAS  Google Scholar 

  • Wu SB, Bao QY, Wang WX, Zhao Y, Xia G, Zhao Z, Zeng H, Hu JF (2011) Cytotoxic triterpenoids and steroids from the bark of Melia azedarach. Planta Med 77(9):922–928

    Article  PubMed  CAS  Google Scholar 

  • Yaoita Y, Amemiya K, Ohnuma H, Furumura K, Masaki A, Matasuki T, Kikuchi M (1998) Sterol constituents from five edible mushrooms. Chem Pharm Bull 46:944–950

    Article  CAS  Google Scholar 

  • Yaoita Y, Matsuki K, Iijima T, Nakano S, Kakuda R, Machida K, Kikuchi M (2001) New sterols and triterpenoids from four edible mushrooms. Chem Pharm Bull 49:589–594

    Article  PubMed  CAS  Google Scholar 

  • Yaoita Y, Yoshihara Y, Kakuda R, Machida K, Kikuchi M (2002) New sterols from two edible mushrooms, Pleurotus eryngii and Panellus serotinus. Chem Pharm Bull 50:551–553

    Article  PubMed  CAS  Google Scholar 

  • Yaremenko IA, Vil’ VA, Demchuk DV, Terent’ev AO (2016) Rearrangements of organic peroxides and related processes. Beilstein J Org Chem 12:1647–1748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yue JM, Chen SN, Lin ZW, Sun HD (2001) Sterols from the fungus Lactarium volemus. Phytochemistry 56:801–806

    Article  PubMed  CAS  Google Scholar 

  • Zang M, Ying JZ (1994) Economic fungi in the South West of China. Scientific Press, Beijing

    Google Scholar 

  • Zhang Y, Pei L, Gao L, Huang Q, Qi J (2011) A neuritogenic compound from Tremella fuciformis. Zhongguo Zhong Yao Za Zhi 36:2358–2360

    PubMed  CAS  Google Scholar 

  • Zheng W, Liu T, Xiang X, Gu Q (2007) Sterol composition in field-grown and cultured mycelia of Inonotus obliquus. Yaoxue Xuebao 42:750–756

    CAS  Google Scholar 

  • Zhou T, Zhang H, Zhu N, Chiu P (2004) New triterpene peroxides from Pseudolarix kaempferi. Tetrahedron 60:4931–4936

    Article  CAS  Google Scholar 

  • Zuo W, Luo DQ (2010) Research on the chemical components of the fruit bodies of Boletus calopus. Anhui Nongye Kexue 38:2356–2357

    CAS  Google Scholar 

Download references

Acknowledgements

The work was performed in the framework of the Program for Basic Research of Russian State Academies of Sciences for 2013–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vil, V.A., Gloriozova, T.A., Poroikov, V.V. et al. Peroxy steroids derived from plant and fungi and their biological activities. Appl Microbiol Biotechnol 102, 7657–7667 (2018). https://doi.org/10.1007/s00253-018-9211-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9211-2

Keywords

Navigation