Skip to main content
Log in

Novel wine yeast with ARO4 and TYR1 mutations that overproduce ‘floral’ aroma compounds 2-phenylethanol and 2-phenylethyl acetate

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

It is well established that the choice of yeast used to perform wine fermentation significantly influences the sensory attributes of wines; different yeast species and strains impart different profiles of esters, volatile fatty acids, higher alcohols, and volatile sulphur compounds. Indeed, choice of yeast remains one of the simplest means by which winemakers can modulate the sensory characteristics of wine. Consequently, there are more than 100 commercially available Saccharomyces cerevisiae wine yeast strains available, mostly derived by isolation from vineyards and successful fermentations. Nevertheless, some desirable characteristics such as ‘rose’ and ‘floral’ aromas in wine are not present amongst existing strains. Such aromas can be conferred from the higher alcohol 2-phenylethanol (2-PE) and its acetate ester, 2-phenylethyl acetate (2-PEA). These metabolites of the aromatic amino acid phenylalanine are present at concentrations below their aroma detection thresholds in many wines, so their contribution to wine style is often minimal. To increase the concentration of phenylalanine metabolites, natural and chemically mutagenised populations of a S. cerevisiae wine strain, AWRI796, were exposed to toxic analogues of phenylalanine. Resistant colonies were found to overproduce 2-PE and 2-PEA by up to 20-fold, which resulted in a significant increase in ‘floral’ aroma in pilot-scale white wines. Genome sequencing of these newly developed strains revealed mutations in two genes of the biosynthetic pathway of aromatic amino acids, ARO4 and TYR1, which were demonstrated to be responsible for the 2-PE overproduction phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Current protocols in molecular biology. Wiley , New York

  • Bellon JR, Schmid F, Capone DL, Dunn BL, Chambers PJ (2013) Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae. PLoS One 8:e62053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bizaj E, Cordente AG, Bellon JR, Raspor P, Curtin CD, Pretorius IS (2012) A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production. FEMS Yeast Res 12:456–465

    Article  PubMed  CAS  Google Scholar 

  • Bordiga M, Lorenzo C, Pardo F, Salinas MR, Travaglia F, Arlorio M, Coïsson JD, Garde-Cerdán T (2016) Factors influencing the formation of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine: temperature, alcoholic degree, and amino acids concentration. Food Chem 197:1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Borneman AR, Forgan AH, Pretorius IS, Chambers PJ (2008) Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res 8:1185–1195

    Article  PubMed  CAS  Google Scholar 

  • Borneman AR, Forgan AH, Kolouchova R, Fraser JA, Schmidt SA (2016) Whole genome comparison reveals high levels of inbreeding and strain redundancy across the spectrum of commercial wine strains of Saccharomyces cerevisiae. G3(Bethesda) 6:957–971

    CAS  Google Scholar 

  • Boughton BA, Callahan DL, Silva C, Bowne J, Nahid A, Rupasinghe T, Tull DL, McConville MJ, Bacic A, Roessner U (2011) Comprehensive profiling and quantification of amine group containing metabolites. Anal Chem 83:7523–7530

    Article  PubMed  CAS  Google Scholar 

  • Cordente AG, Heinrich A, Pretorius IS, Swiegers JH (2009) Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res 9:446–459

    Article  PubMed  CAS  Google Scholar 

  • Cordente AG, Capone DL, Curtin CD (2015) Unravelling glutathione conjugate catabolism in Saccharomyces cerevisiae: the role of glutathione/dipeptide transporters and vacuolar function in the release of volatile sulfur compounds 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one. Appl Microbiol Biotechnol 99:9709–9722

    Article  PubMed  CAS  Google Scholar 

  • Covas MI, Miró-Casas E, Fitó M, Farré-Albadalejo M, Gimeno E, Marrugat J, De La Torre R (2003) Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans. Drugs Exp Clin Res 29:203–206

    PubMed  CAS  Google Scholar 

  • Cueva C, Mingo S, Muñoz-González I, Bustos I, Requena T, del Campo R, Martín-Álvarez PJ, Bartolomé B, Moreno-Arribas MV (2012) Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Lett Appl Microbiol 54:557–563

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente Blanco A, Sáenz-Navajas MP, Ferreira V (2016) On the effects of higher alcohols on red wine aroma. Food Chem 210:107–114

    Article  CAS  Google Scholar 

  • Dueñas-Sánchez R, Pérez AG, Codón AC, Benítez T, Rincón AM (2014) Overproduction of 2-phenylethanol by industrial yeasts to improve organoleptic properties of bakers' products. Int J Food Microbiol 180:7–12

    Article  PubMed  CAS  Google Scholar 

  • Etiévant PX (1991) In: Maarse H (ed) Volatile compounds of food and beverages. Dekker, New York, pp 483–546

    Google Scholar 

  • Fang Y, Qian M (2005) Aroma compounds in Oregon Pinot Noir wine determined by aroma extract dilution analysis (AEDA). Flavour Frag J 20:22–29

    Article  CAS  Google Scholar 

  • Fischer MJ, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108:1883–1892

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Watanabe M, Asano K, Ueda H, Ohta S (1990a) Breeding of brewing yeast producing a large amount of β-phenylethyl alcohol and β-phenylethyl acetate. Agric Biol Chem 54:269–271

    CAS  Google Scholar 

  • Fukuda K, Watanabe M, Asano K (1990b) Altered regulation of aromatic amino acid biosynthesis in β-phenylethyl-alcohol-overproducing mutants of Sake yeast Saccharomyces cerevisiae. Agric Biol Chem 54:3151–3156

    CAS  Google Scholar 

  • Fukuda K, Watanabe M, Asano K, Ouchi K, Takasawa S (1991a) Isolation and genetic study of p-fluoro-DL-phenylalanine-resistant mutants overproducing β-phenethyl-alcohol in Saccharomyces cerevisiae Curr Genet 20:449–452

  • Fukuda K, Watanabe M, Asano K, Ouchi K, Takasawa S (1991) A mutated ARO4 gene for feedback-resistant DAHP synthase which causes both o-fluoro-DL-phenylalanine resistance and β-phenethyl-alcohol overproduction in Saccharomyces cerevisiae. Curr Genet 20:453–456

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Asano K, Ouchi K, Takasawa S (1992a) Feedback-insensitive mutation of 3-deoxy-d-arabino-hepturosonate-7-phosphate synthase caused by a single nucleotide substitution of ARO4 structural gene in Saccharomyces cerevisiae. J Ferment Bioeng 74:117–119

    Article  CAS  Google Scholar 

  • Fukuda K, Watanabe M, Asano K, Ouchi K, Takasawa S (1992b) Molecular breeding of a sake yeast with a mutated ARO4 gene which causes both resistance to o-fluoro-DL-phenylalanine and increased production of β-phenethyl alcohol. J Ferment Bioeng 73:366–369

    Article  CAS  Google Scholar 

  • Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giudici P, Romano P, Zambonelli C (1990) A biometric study of higher alcohol production in Saccharomyces cerevisiae. Can J Microbiol 36:61–64

    Article  PubMed  CAS  Google Scholar 

  • Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJ (2015) Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Factories 14:73

    Article  CAS  Google Scholar 

  • Gürbüz O, Rouseff JM, Rouseff RL (2006) Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography-olfactometry and gas chromatography-mass spectrometry. J Agrc Food Chem 54:3990–3996

    Article  CAS  Google Scholar 

  • Guth H (1997) Quantitation and sensory studies of character impact odorant of different white wine varieties. J Agric Food Chem 45:3027–3032

    Article  CAS  Google Scholar 

  • Hartmann M, Schneider TR, Pfeil A, Heinrich G, Lipscomb WN, Braus GH (2003) Evolution of feedback-inhibited β/α barrel isoenzymes by gene duplication and a single mutation. Proc Natl Acad Sci U S A 100:862–867

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernández-Orte P, Cacho JF, Ferreira V (2002) Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. J Agric Food Chem 50:2891–2899

    Article  PubMed  CAS  Google Scholar 

  • Jackson RS (2014) Wine tasting: a professional handbook, Second edn. Elsevier

  • Koseki T, Kudo S, Matsuda Y, Ishigaki H, Anshoku Y, Muraoka Y, Wada Y (2004) A high tyrosol-producing sake yeast mutant and alcohol beverage utilizing the mutant. Jap Open Pat Gaz:2004–215644

  • Lawrence CW (1991) Classical mutagenesis techniques. Methods Enzymol 194:273–281

    Article  PubMed  CAS  Google Scholar 

  • Mannhaupt G, Stucka R, Pilz U, Schwarzlose C, Feldmann H (1989) Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae. Gene 85:303–311

    Article  PubMed  CAS  Google Scholar 

  • Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NG, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJ, Daran JM (2015) CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15:fov004

  • Marais J (1983) Terpenes in the aroma of grapes and wines: a review. S Afr J Enol Vitic 4:49–58

    CAS  Google Scholar 

  • Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michlmayr H, Nauer S, Brandes W, Schümann C, Kulbe KD, del Hierro AM, Eder R (2012) Release of wine monoterpenes from natural precursors by glycosidases from Oenococcus oeni. Food Chem 135:80–87

    Article  CAS  Google Scholar 

  • Morshedi D, Rezaei-Ghaleh N, Ebrahim-Habibi A, Ahmadian S, Nemat-Gorgani M (2007) Inhibition of amyloid fibrillation of lysozyme by indole derivatives-possible mechanism of action. FEBS J 274:6415–6425

    Article  PubMed  CAS  Google Scholar 

  • Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218

    Article  PubMed  CAS  Google Scholar 

  • Nisbet MA, Tobias HJ, Brenna JT, Sacks GL, Mansfield AK (2014) Quantifying the contribution of grapes hexoses to wine volatiles by high-precision [U13-C]-glucose tracer studies. J Agric Food Chem 62:6820–6827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oba T, Nomiyama S, Hirakawa H, Tashiro K, Kuhara S (2005) Asp578 in LEU4p is one of the key residues for leucine feedback inhibition release in sake yeast. Biosci Biotechnol Biochem 69:1270–1273

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Bencomo JJ, Conde JE, Rodríguez-Delgado MA, García-Montelongo F, Pérez-Trujillo JP (2002) Determination of esters in dry and sweet white wines by headspace solid-phase microextraction and gas chromatography. J Chromatogr A 963:213–223

    Article  PubMed  Google Scholar 

  • Ryan OW, Poddar S, Cate JH (2016) CRISPR–Cas9 genome engineering in Saccharomyces cerevisiae cells. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot086827

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346

    Article  PubMed  CAS  Google Scholar 

  • Schulthess D, Ettlinger L (1978) Influence of the concentration of branched chain amino acids on the formation of fusel alcohols. J Inst Brew 84:240–243

    Article  CAS  Google Scholar 

  • Siebert TE, Smyth HE, Capone DL, Neuwöhner C, Pardon KH, Skouroumounis GK, Herderich MJ, Sefton MA, Pollnitz AP (2005) Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS. Anal Bioanal Chem 381:937–947

    Article  PubMed  CAS  Google Scholar 

  • Soejima H, Tsuge K, Yoshimura T, Koganemaru K, Kitagawi H (2012) Breeding of a high tyrosol-producing sake yeast by isolation of an ethanol-resistant mutant form trp3 mutant. J Inst Brew 118:264–268

    Article  CAS  Google Scholar 

  • Somers TC, Evans ME (1974) Wine quality: correlations with colour density and anthocyanin equilibria in a group of young red wines. J Sci Food Agric 25:1369–1379

    Article  CAS  Google Scholar 

  • Spura J, Reimer LC, Wieloch P, Schreiber K, Buchinger S, Schomburg D (2009) A method for enzyme quenching in microbial metabolome analysis successfully applied to gram-positive and gram-negative bacteria and yeast. Anal Biochem 394:192–201

    Article  PubMed  CAS  Google Scholar 

  • Suástegui M, Shao Z (2016) Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites. J Ind Microbiol Biotechnol 43:1611–1624

    Article  PubMed  CAS  Google Scholar 

  • Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine R 11:139–173

    Article  CAS  Google Scholar 

  • Szlavko CM (1973) Tryptophol, tyrosol and phenylethanol—the aromatic higher alcohols in beer. J Inst Brew 79:283–288

    Article  CAS  Google Scholar 

  • Trindade de Carvalho B, Holt S, Souffriau B, Lopes Brandão R, Foulquié-Moreno MR, Thevelein JM (2017) Identification of novel alleles conferring superior production of rose flavor phenylethyl acetate using polygenic analysis in yeast. MBio 8(e01173-17):e01173–e01117

    PubMed  PubMed Central  Google Scholar 

  • Ugliano M, Bartowsky EJ, McCarthy J, Moio L, Henschke PA (2006) Hydrolysis and transformation of grape glycosidically bound volatile compounds during fermentation with three Saccharomyces yeast strains. J Agric Food Chem 54:6322–6331

    Article  PubMed  CAS  Google Scholar 

  • Vilanova M, Genisheva Z, Graña M, Oliveira JM (2013) Determination of odorants in varietal wines from international grape cultivars (Vitis vinifera) grown in NW Spain. S Afr J Enol Vitic 34:212–222

    CAS  Google Scholar 

Download references

Acknowledgements

The Australian Wine Research Institute (AWRI), a member of the Wine Innovation Cluster in Adelaide, is supported by Australia’s grapegrowers and winemakers through their investment body Wine Australia, with matching funds from the Australian Government. The authors also acknowledge the South Australian Node of Metabolomics Australia which is funded through Bioplatforms Australia Pty Ltd., a National Collaborative Research Infrastructure Strategy (NCRIS), and investment from the South Australian State Government and the AWRI. The sensory panellists and Wes Pearson are thanked for their involvement in the sensory evaluation. We would like to thank Petaluma Winery for donating grapes and Peter Godden for assistance with the winemaking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio G. Cordente.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 553 kb)

ESM 2

(XLSX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordente, A.G., Solomon, M., Schulkin, A. et al. Novel wine yeast with ARO4 and TYR1 mutations that overproduce ‘floral’ aroma compounds 2-phenylethanol and 2-phenylethyl acetate. Appl Microbiol Biotechnol 102, 5977–5988 (2018). https://doi.org/10.1007/s00253-018-9054-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9054-x

Keywords

Navigation