Skip to main content

Advertisement

Log in

Degradation of triclosan by environmental microbial consortia and by axenic cultures of microorganisms with concerns to wastewater treatment

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Triclosan is an antimicrobial agent, which is widely used in personal care products including toothpaste, soaps, deodorants, plastics, and cosmetics. Widespread use of triclosan has resulted in its release into wastewater, surface water, and soils and has received considerable attention in the recent years. It has been reported that triclosan is detected in various environmental compartments. Toxicity studies have suggested its potential environmental impacts, especially to aquatic ecosystems. To date, removal of triclosan has attracted rising attention and biodegradation of triclosan in different systems, such as axenic cultures of microorganisms, full-scale WWTPs, activated sludge, sludge treatment systems, sludge-amended soils, and sediments has been described. In this study, an extensive literature survey was undertaken, to present the current knowledge of the biodegradation behavior of triclosan and highlights the removal and transformation processes to help understand and predict the environmental fate of triclosan. Experiments at from lab-scale to full-scale field studies are shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adolfsson-Erici M, Pettersson J, Paekkonen J, Sturve J (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46:1485–1489

    CAS  PubMed  Google Scholar 

  • Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ 372:87–93

    CAS  PubMed  Google Scholar 

  • Al-Rajab AJ, Sabourin L, Lapen DR, Topp E (2010) The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils. Sci Total Environ 409:78–82

    CAS  PubMed  Google Scholar 

  • Aranami K, Readman J (2007) Photolytic degradation of triclosan in freshwater and seawater. Chemosphere 66:1052–1056

    CAS  PubMed  Google Scholar 

  • Armstrong DL, Lozano N, Rice CP, Ramirez M, Torrents A (2018) Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using benchtop bioreactors. Environ Res 161:17–25

    CAS  PubMed  Google Scholar 

  • Bai XL, Acharya K (2016) Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. J Hazard Mater 315:70–75

    CAS  PubMed  Google Scholar 

  • Bai XL, Acharya K (2017) Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water. Sci Total Environ 581:734–740

    PubMed  Google Scholar 

  • Balmer ME, Poiger T, Droz C, Romanin K, Bergqvist PA, Müller MD, Buser HR (2004) Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ Sci Technol 38:390–395

    CAS  PubMed  Google Scholar 

  • Bester K (2003) Triclosan in a sewage treatment process—balances and monitoring data. Water Res 37:3891–3896

    CAS  PubMed  Google Scholar 

  • Bester K (2005) Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch Environ Contam Toxicol 49:9–17

    CAS  PubMed  Google Scholar 

  • Bhargava HN, Leonard RA (1996) Triclosan: applications and safety. Am J Infect Control 24:208–218

    Google Scholar 

  • Buth JM, Ross MR, McNeill K, Arnold WA (2011) Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. Chemosphere 84:1238–1243

    CAS  PubMed  Google Scholar 

  • Butler E, Whelan MJ, Ritz K, Sakrabani R, van Egmond R (2011) Effects of triclosan on soil microbial respiration. Environ Toxicol Chem 30:360–366

    CAS  PubMed  Google Scholar 

  • Butler E, Whelan MJ, Sakrabani R, van Egmond R (2012) Fate of triclosan in field soils receiving sewage sludge. Environ Pollut 167:101–109

    CAS  PubMed  Google Scholar 

  • Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67:770–778

    CAS  PubMed  Google Scholar 

  • Cabana H, Ahamed A, Leduc R (2011) Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan. Bioresour Technol 102:1656–1662

    CAS  PubMed  Google Scholar 

  • Cajthaml T, Kresinova Z, Svobodova K, Moder M (2009) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75:745–750

    CAS  PubMed  Google Scholar 

  • Chen XJ, Pauly U, Rehfus S, Bester K (2009a) Personal care compounds in a reed bed sludge treatment system. Chemosphere 76:1094–1101

    CAS  PubMed  Google Scholar 

  • Chen XJ, Pauly U, Rehfus S, Bester K (2009b) Removal of personal care compounds from sewage sludge in reed bed container (lysimeter) studies—effects of macrophytes. Sci Total Environ 407:5743–5749

    CAS  PubMed  Google Scholar 

  • Chen XJ, Nielsen JL, Furgal K, Liu YL, Lolas IB, Bester K (2011) Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere 84:452–456

    CAS  PubMed  Google Scholar 

  • Chen XJ, Richard J, Liu YL, Dopp E, Türk J, Bester K (2012) Ozonation products of triclosan in advanced wastewater treatment. Water Res 46:2247–2256

    CAS  PubMed  Google Scholar 

  • Chen XJ, Casas ME, Nielsen JL, Wimmer R, Bester K (2015a) Identification of triclosan-O-sulfate and other transformation products of triclosan formed by activated sludge. Sci Total Environ 505:39–46

    CAS  PubMed  Google Scholar 

  • Chen XJ, Vollertsen J, Nielsen JL, Dall AG, Bester K (2015b) Degradation of PPCPs in activated sludge from different WWTPs in Denmark. Ecotoxicology 24:2073–2080

    CAS  PubMed  Google Scholar 

  • Coogan MA, Edziyie RE, La Point TW, Venables BJ (2007) Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere 67:1911–1918

    CAS  PubMed  Google Scholar 

  • Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285–311

    CAS  PubMed  Google Scholar 

  • Dang VD, Kroll KJ, Supowit SD, Halden RU, Denslow ND (2018) Activated carbon as a means of limiting bioaccumulation of organochlorine pesticides, triclosan, triclocarban, and fipronil from sediments rich in organic matter. Chemosphere 197:627–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das KC, Xia K (2008) Transformation of 4-nonylphenol isomers during biosolids composting. Chemosphere 70:761–768

    CAS  PubMed  Google Scholar 

  • Dayan AD (2007) Risk assessment of triclosan [Irgasan (R)] in human breast milk. Food Chem Toxicol 45:125–129

    CAS  PubMed  Google Scholar 

  • Dhillon GS, Kaur S, Pulicharla R, Satinder Kaur Brar SK, Cledón M, Verma M, Surampalli RY (2015) Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. Int J Environ Res Public Health 12:5657–5684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding TD, Lin K, Bao LJ, Yang MT, Li JY, Yang B, Gan J (2018) Biouptake, toxicity and biotransformation of triclosan in diatom Cymbella sp. and the influence of humic acid. Environ Pollut 234:231–242

    CAS  PubMed  Google Scholar 

  • Dotan P, Godinger T, Odeh W, Groisman L, Al-Khateeb N, Rabbo AA, Tal A, Arnon S (2016) Occurrence and fate of endocrine disrupting compounds in wastewater treatment plants in Israel and the Palestinian West Bank. Chemosphere 155:86–93

    CAS  PubMed  Google Scholar 

  • Dou RN, Wang JH, Chen YC, Hu YY (2018) The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway. Environ Pollut 234:88–95

    CAS  PubMed  Google Scholar 

  • Epstein E (1997) The science of composting. Technomic Publishing Company, Lancaster, pp 171–194

    Google Scholar 

  • EU (2009) Regulation (EC) no 1223/2009 of the European parliament and of the council on cosmetic products. Off J Eur Union 342:59–209

    Google Scholar 

  • EU (2012) Regulation (EU) no 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products text with EEA relevance. Off J Eur Union 167:1–122

    Google Scholar 

  • EU (2016) Commission implementing decision (EU) 2016/110 not approving triclosan as an existing active substance for use in biocidal products for product- type 1. Off J Eur Union 21:86–87

    Google Scholar 

  • Fair PA, Lee HB, Adams J, Darling C, Pacepavicius G, Alaee M, Bossart GD, Henry N, Muir D (2009) Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ Pollut 157:2248–2254

    CAS  PubMed  Google Scholar 

  • Fiss EM, Rule KL, Vikesland PJ (2007) Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environ Sci Technol 41:2387–2394

    CAS  PubMed  Google Scholar 

  • Franz S, Altenburger R, Heilmeier H, Schmitt-Jansen M (2008) What contributes to the sensitivity of microalgae to triclosan? Aquat Toxicol 90:102–108

    CAS  PubMed  Google Scholar 

  • Gonzalez-Marino I, Quintana JB, Rodriguez I, Cela R (2009) Simultaneous determination of parabens, triclosan and triclocarban in water by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1756–1766

    CAS  PubMed  Google Scholar 

  • Guo Q, Yan J, Wen JJ, Hu YY, Chen YB, Wu WJ (2016) Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems. Sci Total Environ 571:1304–1311

    CAS  PubMed  Google Scholar 

  • Gustavsson L, Hollert H, Jonsson S, van Bavel B, Engwall M (2007) Reed beds receiving industrial sludge containing nitroaromatic compounds—effects of outgoing water and bed material extracts in the umu-C genotoxicity assay, DR-CALUX assay and on early life stage development in zebrafish (Danio rerio). Environ Sci Pollut Res 14:202–211

    CAS  Google Scholar 

  • Hay AG, Dees PM, Sayler GS (2001) Growth of a bacterial consortium on triclosan. FEMS Microbiol Ecol 36:105–112

    CAS  PubMed  Google Scholar 

  • Heidler J, Halden RU (2007) Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere 66:362–369

    CAS  PubMed  Google Scholar 

  • Huang XL, Wu CX, Xiong X, Zhang K, Liu JT (2014) Partitioning and degradation of triclosan and formation of methyl-triclosan in water-sediment systems. Water Air Soil Poll 225:2099

  • Huang XL, Wu CX, Hu HJ, Yu YH, Liu JT (2015) Sorption and degradation of triclosan in sediments and its effect on microbes. Ecotox Environ Saf 116:76–83

    CAS  Google Scholar 

  • Hundt K, Jonas U, Hammer E, Schauer F (1999) Transformation of diphenyl ethers by Trametes versicolor and characterization of ring cleavage products. Biodegradation 10:279–286

    CAS  Google Scholar 

  • Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F (2000) Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl Environ Microb 66:4157–4160

    CAS  Google Scholar 

  • Inoue Y, Hata T, Kawai S, Okamura H, Nishida T (2010) Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. J Hazard Mater 180:764–767

    CAS  PubMed  Google Scholar 

  • Inyang M, Flowers R, McAvoy D, Dickenson E (2016) Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system. Bioresour Technol 216:778–784

    CAS  PubMed  Google Scholar 

  • Jahangiri E, Seiwert B, Reemtsma T, Schlosser D (2017) Laccase- and electrochemically mediated conversion of triclosan: metabolite formation and influence on antibacterial activity. Chemosphere 168:549–558

    CAS  PubMed  Google Scholar 

  • Jones RD, Jampani HB, Newman JL, Lee AS (2000) Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28:184–196

    CAS  PubMed  Google Scholar 

  • Kagle JM, Paxson C, Johnstone P, Hay AG (2015) Identification of a gene cluster associated with triclosan catabolism. Biodegradation 26:235–246

    CAS  PubMed  Google Scholar 

  • Kanda R, Griffin P, James HA, Fothergill J (2003) Pharmaceutical and personal care products in sewage treatment works. J Environ Monit 5:823–830

    CAS  PubMed  Google Scholar 

  • Kim YJ, Nicell JA (2006) Laccase-catalysed oxidation of aqueous triclosan. J Chem Technol Biot 81:1344–1352

    CAS  Google Scholar 

  • Kim YM, Murugesan K, Schmidt S, Bokare V, Jeon JR, Kim EJ, Chang YS (2011) Triclosan susceptibility and co-metabolism—a comparison for three aerobic pollutant-degrading bacteria. Bioresour Technol 102:2206–2212

    CAS  PubMed  Google Scholar 

  • Kumar KS, Priya SM, Peck AM, Sajwan KS (2010) Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in savannah, Georgia, USA. Arch Environ Contam Toxicol 58:275–285

    CAS  PubMed  Google Scholar 

  • Latch DE, Packer JL, Arnold WA, McNeill K (2003) Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J Photochem Photobiol A 158:63–66

    CAS  Google Scholar 

  • Lee DG, Chu KH (2013) Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. Chemosphere 93:1904–1911

    CAS  PubMed  Google Scholar 

  • Lee DG, Zhao FM, Rezenom YH, Russell DH, Chu KH (2012) Biodegradation of triclosan by a wastewater microorganism. Water Res 46:4226–4234

    CAS  PubMed  Google Scholar 

  • Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, Rice DW, Rafferty JB (1999) Molecular basis of triclosan activity. Nature 398(6726):383–384

    CAS  PubMed  Google Scholar 

  • Lin KD, Gan J (2011) Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere 83:240–246

    CAS  PubMed  Google Scholar 

  • Lindström A, Bürge IJ, Poiger T, Bergqvist PA, Müller MD, Buser HR (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36:2322–2329

    PubMed  Google Scholar 

  • Lolas IB, Chen XJ, Bester K, Nielsen JL (2012) Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography. Microbiol-Sgm 158:2796–2804

    CAS  Google Scholar 

  • Lozano N, Rice CP, Ramirez M, Torrents A (2010) Fate of triclosan in agricultural soils after biosolid applications. Chemosphere 78:760–766

    CAS  PubMed  Google Scholar 

  • Lozano N, Rice CP, Ramirez M, Torrents A (2013) Fate of Triclocarban, Triclosan and Methyltriclosan during wastewater and biosolids treatment processes. Water Res 47:4519–4527

    CAS  PubMed  Google Scholar 

  • Lu SY, Yu YL, Ren L, Zhang XL, Liu GH, Yu YX (2018) Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact. Environ Sci Technol 621:1389–1396

    CAS  Google Scholar 

  • Macherius A, Eggen T, Lorenz W, Moeder M, Ondruschka J, Reemtsma T (2012) Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment. Environ Sci Technol 46:10797–10804

    CAS  PubMed  Google Scholar 

  • Mathys RG, Branion RMR, Lo KV, Anderson KB, Leyen P, Louie D (1997) CTMP wastewater treatment using a rotating biological contactor. Water Qual Res J Can 32:771–794

    CAS  Google Scholar 

  • McAvoy DC, Schatowitz B, Martin J, Hauk A, Eckhoff WS (2002) Measurement of triclosan in wastewater treatment systems. Environ Toxicol Chem 21:1323–1329

    CAS  PubMed  Google Scholar 

  • Meade MJ, Waddell RL, Callahan TM (2001) Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol Lett 204:45–48

    CAS  PubMed  Google Scholar 

  • Montes-Hernandez G, Concha-Lozano N, Renard F, Quirico E (2009) Removal of oxyanions from synthetic wastewater via carbonation process of calcium hydroxide: applied and fundamental aspects. J Hazard Mater 166:788–795

    CAS  PubMed  Google Scholar 

  • Morrall D, McAvoy D, Schatowitz B, Inauen J, Jacob M, Hauk A, Eckhoff W (2004) A field study of triclosan loss rates in river water (Cibolo Creek, TX). Chemosphere 54:653–660

    CAS  PubMed  Google Scholar 

  • Moss T, Howes D, Williams FM (2000) Percutaneous penetration and dermal metabolism of triclosan (2,4,4 '-trichloro-2 '-hydroxydiphenyl ether). Food Chem Toxicol 38:361–370

    CAS  PubMed  Google Scholar 

  • Mulla SI, Wang H, Sun Q, Hu AY, Yu CP (2016) Characterization of triclosan metabolism in Sphingomonas sp strain YL-JM2C. Sci Rep-Uk 6:21965

  • Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2012) Triclosan breakdown by Fenton-like oxidation. Chem Eng J 198:275–281

    Google Scholar 

  • Murugesan K, Kim YM, Jeon JR, Chang YS (2009) Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. J Hazard Mater 168:523–529

    CAS  PubMed  Google Scholar 

  • Murugesan K, Chang YY, Kim YM, Jong-Rok J, Kim EJ, Chang YS (2010) Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res 44:298–308

    CAS  PubMed  Google Scholar 

  • Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res 40:3297–3303

    CAS  PubMed  Google Scholar 

  • Nakada N, Yasojima M, Okayasu Y, Komori K, Suzuki Y (2010) Mass balance analysis of triclosan, diethyltoluamide, crotamiton and carbamazepine in sewage treatment plants. Water Sci Technol 61:1739–1747

    CAS  PubMed  Google Scholar 

  • Nielsen S (2003) Sludge drying reed beds. Water Sci Technol 48:101–109

    CAS  PubMed  Google Scholar 

  • Nielsen S (2005) Sludge reed bed facilities: operation and problems. Water Sci Technol 51:99–107

    CAS  PubMed  Google Scholar 

  • Orhon AK, Orhon KB, Yetis U, Dilek FB (2017) Fate of triclosan in laboratory-scale activated sludge reactors—effect of culture acclimation. J Environ Manag XX:1–8

    Google Scholar 

  • Pakou C, Kornaros M, Stamatelatou K, Lyberatos G (2009) On the fate of LAS, NPEOs and DEHP in municipal sewage sludge during composting. Bioresour Technol 100:1634–1642

    CAS  PubMed  Google Scholar 

  • Pothitou P, Voutsa D (2008) Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece. Chemosphere 73:1716–1723

    CAS  PubMed  Google Scholar 

  • Poulsen TG, Bester K (2010) Organic micropollutant degradation in sewage sludge during composting under thermophilic conditions. Environ Sci Technol 44:5086–5091

    CAS  PubMed  Google Scholar 

  • Pycke BFG, Roll IB, Brownawell BJ, Kinney CA, Furlong ET, Kolpin DW, Halden RU (2014) Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States. Environ Sci Technol 48:7881–7890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Q, Chen XJ, Zhuang J (2015) The fate and impact of pharmaceuticals and personal care products in agricultural soils irrigated with reclaimed water. Crit Rev Env Sci Tec 45:1379–1408

    CAS  Google Scholar 

  • Regueiro J, Becerril E, Garcia-Jares C, Liompart M (2009) Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography–tandem mass spectrometry. J Chrom A 1216:4693–4702

    CAS  Google Scholar 

  • Roberts J, Price OR, Bettles N, Rendal C, van Egmond R (2014) Accounting for dissociation and photolysis: a review of the algal toxicity of triclosan. Environ Toxicol Chem 33:2551–2559

    CAS  PubMed  Google Scholar 

  • Roh H, Subramanya N, Zhao FM, Yu CP, Sandt J, Chu KH (2009) Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 77:1084–1089

    CAS  PubMed  Google Scholar 

  • Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Environmental fate of triclosan in the River Aire Basin, UK. Water Res 37:3145–3154

    CAS  PubMed  Google Scholar 

  • Sadef Y, Poulsen TG, Bester K (2014a) Impact of compost process temperature on organic micro-pollutant degradation. Sci Total Environ 494:306–312

    PubMed  Google Scholar 

  • Sadef Y, Poulsen TG, Bester K (2014b) Modeling organic micro pollutant degradation kinetics during sewage sludge composting. Waste Manag 34:2007–2013

    CAS  PubMed  Google Scholar 

  • Sadef Y, Poulsen TG, Bester K (2015) Impact of compost process conditions on organic micro pollutant degradation during full scale composting. Waste Manag 40:31–37

    CAS  PubMed  Google Scholar 

  • Sanchez-Prado L, Llompart M, Lores M, Garcia-Jares C, Bayona JM, Cela R (2006) Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction. Chemosphere 65:1338–1347

    CAS  PubMed  Google Scholar 

  • Sanchez-Prado L, Barro R, Garcia-Jares C, Llompart M, Lores M, Petrakis C, Kalogerakis N, Mantzavinos D, Psillakis E (2008) Sonochemical degradation of triclosan in water and wastewater. Ultrason Sonochem 15:689–694

    CAS  PubMed  Google Scholar 

  • Scientific Committee on Consumer Products (SCCP) (2009) Opinion on triclosan. SCCP/1192/08 SCCP.https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf

  • Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004

    CAS  PubMed  Google Scholar 

  • Stasinakis AS, Petalas AV, Mamais D, Thomaidis NS, Gatidou G, Lekkas TD (2007) Investigation of triclosan fate and toxicity in continuous-flow activated sludge systems. Chemosphere 68:375–381

    CAS  PubMed  Google Scholar 

  • Stasinakis AS, Kordoutis CI, Tsiouma VC, Gatidou G, Thomaidis NS (2010) Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Bioresour Technol 101:2090–2095

    CAS  PubMed  Google Scholar 

  • Sun K, Kang FX, Waigi MG, Gao YZ, Huang QG (2017) Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid. Environ Pollut 220:105–111

    CAS  PubMed  Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP, Fu PP, Miller DW, Cerniglia CE (1992) Identification of xyloside conjugates formed from anthracene by Rhizoctonia solani. Mycol Res 96:509–517

    CAS  Google Scholar 

  • Taştan BE, Dönmez G (2015) Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pestic Biochem Phys 118:33–37

    Google Scholar 

  • Thomas PM, Foster GD (2005) Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process. Environl Toxicol Chem 24:25–30

    CAS  Google Scholar 

  • Thompson A, Griffin P, Stuetz R, Cartmell E (2005) The fate and removal of triclosan during wastewater treatment. Water Environ Res 77:63–67

    CAS  PubMed  Google Scholar 

  • van Wijnen J, Ragas AMJ, Kroeze C (2018) River export of triclosan from land to sea: a global modelling approach. Sci Total Environ 621:1280–1288

    PubMed  Google Scholar 

  • Veetil PGP, Nadaraja AV, Bhasi A, Khan S, Bhanskaran K (2012) Degradation of triclosan under aerobic, anoxic, and anaerobic conditions. Appl Biochem Biotechnol 167:1603–1612

    Google Scholar 

  • Villaverde-de-Saa E, Gonzalez-Marino I, Quintana JB, Rodil R, Rodriguez I, Cela R (2010) In-sample acetylation-non-porous membrane-assisted liquid-liquid extraction for the determination of parabens and triclosan in water samples. Anal Bioanal Chem 397:2559–2568

    CAS  PubMed  Google Scholar 

  • Walters E, McClellan K, Halden RU (2010) Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms. Water Res 44:6011–6020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SJ, Wang X, Poon K, Wang YN, Li SF, Liu HX, Lin SH, Cai ZW (2013) Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere 92:1498–1505

    CAS  PubMed  Google Scholar 

  • Wang L, Alexandros GA, Kurunthachalam K (2015a) Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue. Environ Int 78:45–50

    CAS  PubMed  Google Scholar 

  • Wang XL, Chen XJ, Feng XJ, Chang F, Chen MJ, Xia YK, Chen L (2015b) Triclosan causes spontaneous abortion accompanied by decline of estrogen sulfotransferase activity in humans and mice. Sci Rep-Uk 5:18252

  • Wang SZ, Yin YN, Jianlong Wang JL (2018a) Microbial degradation of triclosan by a novel strain of Dyella sp. Appl Microbiol and Biot 102:1997–2006

    CAS  Google Scholar 

  • Wang SJ, Poon K, Zongwei Cai ZW (2018b) Removal and metabolism of triclosan by three different microalgal species in aquatic environment. J Hazard Mater 342:643–650

    CAS  PubMed  Google Scholar 

  • Waria M, O'Connor GA, Toor GS (2011) Biodegradation of triclosan in biosolids-amended soils. Environ Toxicol Chem 30:2488–2496

    CAS  PubMed  Google Scholar 

  • Wick A, Marincas O, Moldovan Z, Ternes TA (2011) Sorption of biocides, triazine and phenylurea herbicides, and UV–filters onto secondary sludge. Water Res 45:3638–3652

    CAS  PubMed  Google Scholar 

  • Wilson BA, Smith VH, DeNoyelles F, Larive CK (2003) Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Sci Technol 37:1713–1719

    CAS  PubMed  Google Scholar 

  • Wong-Wah-Chung P, Rafqah S, Voyard G, Sarakha M (2007) Photochemical behaviour of triclosan in aqueous solutions: kinetic and analytical studies. J Photoch Photobio A 191:201–208

    CAS  Google Scholar 

  • Wu JL, Lam NP, Martens D, Kettrup A, Cai ZW (2007) Triclosan determination in water related to wastewater treatment. Talanta 72:1650–1654

    CAS  PubMed  Google Scholar 

  • Wu CX, Spongberg AL, Witter JD (2009) Adsorption and degradation of triclosan and triclocarban in solis and biosolids-amended soils. J Agric Food Chem 57:4900–4905

    CAS  PubMed  Google Scholar 

  • Wu JL, Liu J, Cai ZW (2010) Determination of triclosan metabolites by using in-source fragmentation from high-performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry. Rapid Commun Mass Spectrom 24:1828–1834

    CAS  PubMed  Google Scholar 

  • Wu JL, Leung KF, Tong SF, Lam CW (2012) Organochlorine isotopic pattern-enhanced detection and quantification of triclosan and its metabolites in human serum by ultra-high-performance liquid chromatography/quadrupole time-of-flight/mass spectrometry. Rapid Commun Mass Spectrom 26:123–132

    CAS  PubMed  Google Scholar 

  • Xu R, Si YF, Wu XT, Li FT, Zhang BR (2014) Triclosan removal by laccase immobilized on mesoporous nanofibers: strong adsorption and efficient degradation. Chem Eng J 255:63–70

    CAS  Google Scholar 

  • Ying GG, Kookana RS (2007) Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ Int 33:199–205

    CAS  PubMed  Google Scholar 

  • Ying GG, Yu XY, Kookana RS (2007) Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ Pollut 150:300–305

    CAS  PubMed  Google Scholar 

  • Yu JC, Kwong TY, Luo Q, Cai ZW (2006) Photocatalytic oxidation of triclosan. Chemosphere 65:390–399

    CAS  PubMed  Google Scholar 

  • Zhang H, Huang CH (2003) Transformation of triclosan and chlorophene by manganese oxides. Environ Sci Technol 37:2421–2430

    CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support from the National Natural Science Foundation of China (31500437, 41671229) as well as the AUFF project: center for advanced water purification of Aarhus University as well as the BONUS CLEANWATER project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Bester.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhuang, J. & Bester, K. Degradation of triclosan by environmental microbial consortia and by axenic cultures of microorganisms with concerns to wastewater treatment. Appl Microbiol Biotechnol 102, 5403–5417 (2018). https://doi.org/10.1007/s00253-018-9029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9029-y

Keywords

Navigation