Skip to main content
Log in

Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biobutanol can be indigenously synthesized by solventogenic Clostridium species; however, these microorganisms possess inferior capability of utilizing abundant and renewable organic wastes, such as starch, lignocellulose, and even syngas. The common strategy to achieve direct butanol production from these organic wastes is through genetic modification of wild-type strains. However, due to the complex of butanol synthetic and hydrolytic enzymes expression systems, the recombinants show unsatisfactory results. Recently, setting up microbial co-culturing systems became more attractive, as they could not only perform more complicated tasks, but also endure changeable environments. Hence, this mini-review comprehensively summarized the state-of-the-art biobutanol production from different substrates by using microbial co-culturing systems. Furthermore, strategies regarding establishment principles of microbial co-culturing systems were also analyzed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Diender M, Stams AJM, Sousa DZ (2016) Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas. Biotechnol Biofuels. 9(1):82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding MZ, Song H, Wang EX, Liu Y, Yuan YJ (2016) Design and construction of synthetic microbial consortia in China. Synth Syst Biotechnol 1(4):230–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Dürre P (2016) Butanol formation from gaseous substrates. FEMS Microbiol Lett 363:fnw040. https://doi.org/10.1093/femsle/fnw040

    Article  CAS  PubMed  Google Scholar 

  • Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72

    Article  PubMed  CAS  Google Scholar 

  • Gaida SM, Liedtke A, Jentges AHW, Engels B, Jennewein S (2016) Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Factories 15(1):6

    Article  CAS  Google Scholar 

  • Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S (2011) Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J 6(11):1348–1357

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Ramey S, Yang S (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl Biochem Biotechnol 115:887–898

    Article  Google Scholar 

  • Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z (2009) Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol 100(13):3403–3409

    Article  CAS  PubMed  Google Scholar 

  • Jiang YJ, Chen TP, Dong WL, Zhang M, Zhang WM, Wu H, Ma JF, Jiang M, Xin FX (2017a) The draft genome sequence of Clostridium beijerinckii NJP7, a unique bacterium capable of producing isopropanol-butanol from hemicellulose through consolidated bioprocessing. Curr Microbiol 75(3):305–308

    Article  PubMed  CAS  Google Scholar 

  • Jiang YJ, Xin FX, Lu JS, Dong WL, Zhang WM, Zhang M, Wu H, Ma JF, Jiang M (2017b) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol 245:1498–1506

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyoshi K, Furukawa M, Seyama T, Kadokura T, Nakazato A, Nakayama S (2015) Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum, and Clostridium saccharoperbutylacetonicum. Bioresour Technol 186:325–328

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Contreras A, Smidt H, van der Oost J, Claassen P, Mooibroek H, de Vos W (2001) Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production. Appl Environ Microbiol 67:5127–5133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo HZ, Ge LB, Zhang JZ, Zhao YL, Ding J, Li ZG, He ZN, Chen R, Shi ZP (2015) Enhancing butanol production under the stress environments of co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous butyrate addition. PLoS One 10(10):e0141160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo H, Zeng Q, Han S, Wang Z, Dong Q, Bi Y, Zhao Y (2017) High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. World J Microbiol Biotechnol 33(4):76

    Article  PubMed  CAS  Google Scholar 

  • Mai S, Wang G, Wu P, Gu C, Liu H, Zhang J, Wang G (2016) Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in co-culture for butanol production under non-anaerobic conditions. Biotechnol Appl Biochem 64(5):719–726

    Article  CAS  Google Scholar 

  • Michel-Savin D, Marchal R, Vandecasteele JP (1990a) Butyrate production in continuous culture of Clostridium tyrobutyricum: effect of end-product inhibition. Appl Microbiol Biotechnol 33(2):127–131

    Article  CAS  Google Scholar 

  • Michel-Savin D, Marchal R, Vandecasteele JP (1990b) Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum. Appl Microbiol Biotechnol 32(4):387–392

    Article  CAS  Google Scholar 

  • Mingardon F, Perret S, Belaich A, Tardif C, Belaich J, Fierobe H (2005) Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 71:1215–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingardon F, Chanal A, Tardif C, Fierobe H (2011) The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 77:2831–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mock J, Zheng Y, Mueller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. JBacteriol 197(18):2965–2980

    Article  CAS  Google Scholar 

  • Nakayama S, Kiyoshi K, Kadokura T, Nakazato A (2011) Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl Environ Microbiol 77:6470–6475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petitdemange E, Fond O, Caillet F, Petitdemange H, Gay R (1983) A novel one step process for cellulose fermentation using mesophilic cellulolytic and glycolytic clostridia. Biotechnol Lett 5(2):119–124

    Article  CAS  Google Scholar 

  • Richter H, Molitor B, Diender M, Sousa DZ, Angenent LT (2016) A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction. Front Microbiol 7:1773

    Article  PubMed  PubMed Central  Google Scholar 

  • Saini M, Chen MH, Chiang C, Chao YP (2015) Potential production platform of n-butanol in Escherichia coli. Metab Eng 27:76–82

    Article  CAS  PubMed  Google Scholar 

  • Saini M, Chiang CJ, Li SY, Chao YP (2016) Production of biobutanol from cellulose hydrolysate by the Escherichia coli coculture system. FEMS Microbiol Lett 363(4):fnw008

    Article  PubMed  CAS  Google Scholar 

  • Sleat R, Mah R, Robinson R (1984) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl Environ Microbiol 48:88–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sohail M, Hahzad S, Ahmed A, Khan SA (2005) A survey of amylolytic bacteria and fungi from native environmental samples. Pakistan J Bot 37(1):155–161

    Google Scholar 

  • Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ (2014) Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev 43(20):6954–6981

    Article  CAS  PubMed  Google Scholar 

  • Tran HTM, Cheirsilp B, Hodgson B, Umsakul K (2010) Potential use of Bacillus subtilis, in a co-culture with Clostridium butylicum, for acetone–butanol–ethanol production from cassava starch. Biochem Eng J 48(2):260–267

    Article  CAS  Google Scholar 

  • Tran HTM, Cheirsilp B, Umsakul K, Bourtoom T (2011) Response surface optimisation for acetone-butanol-ethanol production from cassava starch by co-culture of Clostridium butylicum and Bacillus subtilis. Maejo Int. J Sci Technol 5(3):374–389

    CAS  Google Scholar 

  • Wen ZQ, Wu MB, Lin YJ, Yang LR, Lin JP, Cen PL (2014a) Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Factories 13(1):92

    Article  CAS  Google Scholar 

  • Wen ZQ, Wu MB, Lin YJ, Yang LR, Lin JP, Cen PL (2014b) A novel strategy for sequential co-culture of Clostridium thermocellum, and Clostridium beijerinckii, to produce solvents from alkali extracted corn cobs. Process Biochem 49(11):1941–1949

    Article  CAS  Google Scholar 

  • Xin FX, He JZ (2013) Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresour Technol 135:309–315

    Article  CAS  PubMed  Google Scholar 

  • Xin FX, Wu YR, He JZ (2014) Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 80(15):4771–4778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xin FX, Wang C, Dong WL, Zhang WM, Wu H, Ma JF, Jiang M (2016) Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium, strain from glycerol and polysaccharides. Biotechnol Biofuels 9(1):220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xin FX, Chen TP, Jiang YJ, Dong WL, Zhang WM, Zhang M, Wu H, Ma JF, Jiang M (2017) Strategies for improved isopropanol-butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels. 10(1):118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Xu M, Yang ST (2015) Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab Eng 32:39–48

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Wu Z, Yang ST (2002) Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochem 38(5):657–666

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Province Natural Science Foundation for Youths (No. BK20170993, BK20170997); the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture; the Project of State Key Laboratory of Materials-Oriented Chemical Engineering (KL16-08); the Key Science and Technology Project of Jiangsu Province (BE2016389); the Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, China; and the National Natural Science Foundation of China (No. 21706125, No. 21727818, No. 21706124, No. 31700092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Jiang or Fengxue Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhang, T., Lu, J. et al. Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing. Appl Microbiol Biotechnol 102, 5419–5425 (2018). https://doi.org/10.1007/s00253-018-8970-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8970-0

Keywords

Navigation