Alvarez R, Evans LA, Milham PJ, Wilson MA (2004) Effects of humic material on the precipitation of calcium phosphate. Geoderma 118:245–260. doi:10.1016/S0016-7061(03)00207-6
CAS
Article
Google Scholar
Ambuchi JJ, Liu J, Wang H, Shan L, Zhou X, Mohammed MO, Feng Y (2016) Microbial community structural analysis of an expanded granular sludge bed (EGSB) reactor for beet sugar industrial wastewater (BSIW) treatment. Appl Microbiol Biotechnol 100:4651–4661. doi:10.1007/s00253-015-7245-2
CAS
Article
PubMed
Google Scholar
Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustainable Energy Rev 15:4295–4301. doi:10.1016/j.rser.2011.07.121
CAS
Article
Google Scholar
Azman S, Khadem AF, van Lier JB, Zeeman G, Plugge CM (2015a) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Env Sci Tec 45:2523–2564. doi:10.1080/10643389.2015.1053727
CAS
Article
Google Scholar
Azman S, Khadem AF, Zeeman G, van Lier JB, Plugge CM (2015b) Mitigation of humic acid inhibition in anaerobic digestion of cellulose by addition of various salts. Bioengineering 2:54–62. doi:10.3390/bioengineering2020054
Article
Google Scholar
Brons HJ, Field JA, Lexmond WAC, Lettinga G (1985) Influence of humic acids on the hydrolysis of potato protein during anaerobic digestion. Agricultural Wastes 13:105–114. doi:10.1016/0141-4607(85)90017-4
CAS
Article
Google Scholar
Campanaro S, Treu L, Kougias PG, Francisci D, Valle G, Angelidaki I (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9:1–17. doi:10.1186/s13068-016-0441-1
Article
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303
CAS
Article
PubMed
PubMed Central
Google Scholar
Ceccanti B, Doni S, Macci C, Cercignani G, Masciandaro G (2008) Characterization of stable humic–enzyme complexes of different soil ecosystems through analytical isoelectric focussing technique (IEF). Soil Biol Biochem 40:2174–2177. doi:10.1016/j.soilbio.2008.02.004
CAS
Article
Google Scholar
Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. doi:10.1016/j.biortech.2007.01.057
CAS
Article
PubMed
Google Scholar
Conklin A, Stensel HD, Ferguson J (2006) Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ Res 78:486–496. doi:10.2175/106143006x95393
CAS
Article
PubMed
Google Scholar
Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444. doi:10.1016/S0723-2020(99)80053-8
CAS
Article
PubMed
Google Scholar
Davies G, Ghabbour EA, Steelink C (2001) Humic acids: marvelous products of soil chemistry. J Chem Educ 78:1609–1614. doi:10.1021/ed078p1609
De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jáuregui R, Pieper DH, Verstraete W, Boon N (2015a) Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Appl Microbiol Biotechnol 99:189–199. doi:10.1007/s00253-014-6046-3
De Vrieze J, Saunders AM, He Y, Fang J, Nielsen PH, Verstraete W, Boon N (2015b) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res 75:312–323. doi:10.1016/j.watres.2015.02.025
CAS
Article
PubMed
Google Scholar
El-Mashad HM, Zeeman G, Van Loon WK, Bot GP, Lettinga G (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour Technol 95:191–201. doi:10.1016/j.biortech.2003.07.013
CAS
Article
PubMed
Google Scholar
Fernandes TV (2010) Hydrolysis inhibition of complex biowaste. Dissertation, Wageningen University
Fernandes TV, van Lier JB, Zeeman G (2015) Humic acid-like and fulvic acid-like inhibition on the hydrolysis of cellulose and tributyrin. Bioenergy Res 8:821–831. doi:10.1007/s12155-014-9564-z
CAS
Article
Google Scholar
Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers allow hundreds of samples to be pyrosequenced in multiplex. Nat Methods 5:235–237. doi:10.1038/nmeth.1184
CAS
Article
PubMed
PubMed Central
Google Scholar
Hao LP, Lü F, Li L, Shao LM, He PJ (2012) Shift of pathways during initiation of thermophilic methanogenesis at different initial pH. Bioresour Technol 126:418–424. doi:10.1016/j.biortech.2011.12.072
CAS
Article
PubMed
Google Scholar
Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027
CAS
Article
PubMed
Google Scholar
Hong P-Y, Iakiviak M, Dodd D, Zhang M, Mackie RI, Cann I (2014) Two new xylanases with different substrate specificities from the human gut bacterium Bacteroides intestinalis DSM 17393. Appl Environ Microbiol 80:2084–2093. doi:10.1128/AEM.03176-13
Article
PubMed
PubMed Central
Google Scholar
Kang K-H, Shin HS, Park H (2002) Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res 36:4023–4032. doi:10.1016/S0043-1354(02)00114-8
CAS
Article
PubMed
Google Scholar
Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26. doi:10.1007/s00253-004-1642-2
CAS
Article
PubMed
Google Scholar
Kopetz H (2013) Renewable resources: build a biomass energy market. Nature 494:29–31. doi:10.1038/494029a
CAS
Article
PubMed
Google Scholar
Kudo T (2009) Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci Biotechnol Biochem 73:2561–2567. doi:10.1271/bbb.90304
CAS
Article
PubMed
Google Scholar
Kvist T, Ahring BK, Westermann P (2007) Archaeal diversity in Icelandic hot springs. FEMS Microbiol Ecol 59:71–80. doi:10.1111/j.1574-6941.2006.00209.x
CAS
Article
PubMed
Google Scholar
Lauri P, Havlík P, Kindermann G, Forsell N, Böttcher H, Obersteiner M (2014) Woody biomass energy potential in 2050. Energy Policy 66:19–31. doi:10.1016/j.enpol.2013.11.033
Article
Google Scholar
Li X, Xing M, Yang J, Huang Z (2011) Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung. J Hazard Mater 185:740–748. doi:10.1016/j.jhazmat.2010.09.081
CAS
Article
PubMed
Google Scholar
Li H, Li Y, Jin Y, Zou S, Li C (2014) Recovery of sludge humic acids with alkaline pretreatment and its impact on subsequent anaerobic digestion. J Chem Technol Biotechnol 89:707–713. doi:10.1002/jctb.4173
CAS
Article
Google Scholar
Liu X, Bayard R, Benbelkacem H, Buffière P, Gourdon R (2015) Evaluation of the correlations between biodegradability of lignocellulosic feedstocks in anaerobic digestion process and their biochemical characteristics. Biomass Bioenerg 81:534–543. doi:10.1016/j.biombioe.2015.06.021
CAS
Article
Google Scholar
Negro MJ, Manzanares P, Oliva JM, Ballesteros I, Ballesteros M (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenerg 25:301–308. doi:10.1016/S0961-9534(03)00017-5
CAS
Article
Google Scholar
Nielsen PH, Kragelund C, Seviour RJ, Nielsen JL (2009) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol Rev 33:969–998. doi:10.1111/j.1574-6976.2009.00186.x
CAS
Article
PubMed
Google Scholar
Oren A (2014) The family Methanoregulaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Heidelberg, pp. 253–258. doi:10.1007/978-3-642-38954-2_5
Google Scholar
Plugge CM (2005) Anoxic media design, preparation, and considerations. Methods Enzymol 397:3–16. doi:10.1016/S0076-6879(05)97001-8
CAS
Article
PubMed
Google Scholar
Prokhotskaya VY, Steinberg CE (2007) Differential sensitivity of a coccal green algal and a cyanobacterial species to dissolved natural organic matter (NOM). Environ Sci Poll Res 14:11–18. doi:10.1065/espr2007.01.379
CAS
Article
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219
CAS
Article
PubMed
Google Scholar
Ramiro-Garcia J, Hermes GDA, Giatsis C, Sipkema D, Zoetendal EG, Schaap PJ, Smidt H (2016) NG-tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes [version 1; referees: awaiting peer review]. F1000Research 5:1791. doi:10.12688/f1000research.9227.1
Article
Google Scholar
Raposo F, De la Rubia M, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sustainable Energy Rev 16:861–877. doi:10.1016/j.rser.2011.09.008
CAS
Article
Google Scholar
Ren Z, Graham N (2015) Treatment of humic acid in drinking water by combining potassium manganate (Mn (Vi)), ferrous sulfate, and magnetic ion exchange. Environ Eng Sci 32:175–178. doi:10.1089/ees.2014.0227
CAS
Article
Google Scholar
Romero-Güiza MS, Vila J, Mata-Alvarez J, Chimenos JM, Astals S (2016) The role of additives on anaerobic digestion: a review. Renew Sustainable Energy Rev 58:1486–1499. doi:10.1016/j.rser.2015.12.094
Article
Google Scholar
Sawin JL, Sverrisson F, Rickerson W, Lins C, Williamson LE, Adib R, Murdock HE, Musolino E, Hullin M, Reith A, Valero A, Mastny L, Petrichenko K, Seyboth K, Skeen J, Sovacool B, Wouters F, Martinot E (2015) Renewables 2015 global status report- annual reporting on renewables: ten years of excellence (INIS-FR--15-0643). REN 21 Secretariat, Paris
Google Scholar
Scheff G, Salcher O, Lingens F (1984) Trichococcus flocculiformis gen. nov. sp. nov. A new gram-positive filamentous bacterium isolated from bulking sludge. Appl Microbiol Biotechnol 19:114–119. doi:10.1007/BF00302451
CAS
Article
Google Scholar
Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H (2001) In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749. doi:10.1128/AEM.67.12.5740-5749.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge
Book
Google Scholar
Song H, Li A, Zhou Y (2013) Selective removal of DOM on anion-exchange resin from water. In: Xu J, Wu J, He Y (eds) Functions of natural organic matter in changing environment. Springer, Netherlands, pp. 921–924. doi:10.1007/978-94-007-5634-2
Chapter
Google Scholar
Stams AJM, Van Dijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119
CAS
PubMed
PubMed Central
Google Scholar
Steinberg LM, Regan JM (2011) Response of lab-scale methanogenic reactors inoculated from different sources to organic loading rate shocks. Bioresour Technol 102:8790–8798. doi:10.1016/j.biortech.2011.07.017
CAS
Article
PubMed
Google Scholar
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A (2015) Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8:1–18. doi:10.1186/s13068-014-0193-8
Article
Google Scholar
Tan KH (2014) Humic matter in soil and the environment: principles and controversies. CRC Press, Boca Raton, Florida
Book
Google Scholar
Tiwary A, Williams ID, Pant DC, Kishore VVN (2015) Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation. Renew Sustainable Energ Rev 42:883–901. doi:10.1016/j.rser.2014.10.052
Article
Google Scholar
Toka A, Iakovou E, Vlachos D, Tsolakis N, Grigoriadou A-L (2014) Managing the diffusion of biomass in the residential energy sector: an illustrative real-world case study. Appl Energy 129:56–69. doi:10.1016/j.apenergy.2014.04.078
Article
Google Scholar
van den Bogert B, de Vos WM, Zoetendal EG, Kleerebezem M (2011) Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl Environ Microbiol 77:2071–2080. doi:10.1128/AEM.02477-10
Article
PubMed
PubMed Central
Google Scholar
van den Bogert B, Erkus O, Boekhorst J, de Goffau M, Smid EJ, Zoetendal EG, Kleerebezem M (2013) Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol Ecol 85:376–388. doi:10.1111/1574-6941.12127
Article
PubMed
Google Scholar
van Meerbeek K, Appels L, Dewil R, van Beek J, Bellings L, Liebert K, Muys B, Hermy M (2015) Energy potential for combustion and anaerobic digestion of biomass from low-input high-diversity systems in conservation areas. GCB Bioenergy 7:888–898. doi:10.1111/gcbb.12208
Article
Google Scholar
Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW (2015) Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters. Sci Rep 5:8496. doi:10.1038/srep08496
CAS
Article
PubMed
PubMed Central
Google Scholar
Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933. doi:10.1016/j.fuel.2009.10.022
CAS
Article
Google Scholar
Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC (2015) Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels 8:1–16. doi:10.1186/s13068-015-0379-8
Article
Google Scholar
Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4:e7401. doi:10.1371/journal.pone.0007401
Article
PubMed
PubMed Central
Google Scholar
Ward N, Staley JT, Fuerst JA, Giovannoni S, Schlesner H, Stackebrandt E (2006) The order Planctomycetales, including the genera Planctomyces, Pirellula, Gemmata and Isosphaera and the candidatus genera Brocadia, Kuenenia and Scalindua. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp. 757–793. doi:10.1007/0-387-30747-8_31
Chapter
Google Scholar
Westerholm M, Crauwels S, van Geel M, Dewil R, Lievens B, Appels L (2016) Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge. Appl Microbiol Biotechnol 100:5339–5352. doi:10.1007/s00253-016-7321-2
CAS
Article
PubMed
Google Scholar
Wilkins D, Rao S, Lu X, Lee PKH (2015) Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion. Front Microbiol 6:1114. doi:10.3389/fmicb.2015.01114
Article
PubMed
PubMed Central
Google Scholar
Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340. doi:10.1099/ijs.0.64169-0
CAS
Article
PubMed
Google Scholar
Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–2306. doi:10.1099/ijs.0.65098-0
CAS
Article
PubMed
Google Scholar
Yuan Z, Yang H, Zhi X, Shen J (2010) Increased performance of continuous stirred tank reactor with calcium supplementation. Int J Hydrog Energy 35:2622–2626. doi:10.1016/j.ijhydene.2009.04.018
CAS
Article
Google Scholar
Zhang M, Chekan JR, Dodd D, Hong P-Y, Radlinski L, Revindran V, Nair SK, Mackie RI, Cann I (2014) Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proc Natl Acad Sci 111:E3708–E3717. doi:10.1073/pnas.1406156111
CAS
Article
PubMed
PubMed Central
Google Scholar
Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. doi:10.1016/j.pecs.2014.01.001
Article
Google Scholar