Skip to main content
Log in

A novel cell autolysis system for cost-competitive downstream processing

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The industrial production of low value-added biological products poses significant challenges due to cost pressures. In recent years, it has been argued that synthetic biology approaches will lead to breakthroughs that eliminate price bottlenecks for the production of a wide range of biological products including bioplastics and biofuels. One significant bottleneck lies in the necessity to break the tough cell walls of microbes in order to release intracellular products. We here report the implementation of the first synthetic biology standard part based on the lambda phage SRRz genes and a synthetic ribosome binding site (RBS) that works in Escherichia coli and Halomonas campaniensis, which enables the producer strains to induce lysis after the addition of small amounts (1–5 %) of solvents or to spontaneously lyse during the stresses of downstream processing, and thus has the potential to eliminate the mechanical cell disruption step as both an efficiency bottleneck and a significant capex barrier when implementing downstream bioprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

References

  • Bläsi U, Chang CY, Zagotta MT, Nam KB, Young R (1990) The lethal lambda S gene encodes its own inhibitor. EMBO J 9:981

    PubMed  PubMed Central  Google Scholar 

  • Cai Z, Xu W, Xue R, Lin Z (2008) Facile, reagentless and in situ release of Escherichia coli intracellular enzymes by heat-inducible autolytic vector for high-throughput screening. Protein Eng Des Sel 21:681–687

    Article  CAS  PubMed  Google Scholar 

  • Durante-Rodríguez G, de Lorenzo V, Martínez-García E (2014) The Standard European Vector Architecture (SEVA) plasmid toolkit. In: Pseudomonas methods and protocols. Springer, New York, pp. 469–478

    Chapter  Google Scholar 

  • Fu XZ, Tan D, Aibaidula G, Wu Q, Chen JC, Chen GQ (2014) Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Feng X, Xian M, Wang Q, Zhao G (2013) Inducible cell lysis systems in microbial production of bio-based chemicals. Appl Microbiol Biotechnol 97:7121–7129

    Article  CAS  PubMed  Google Scholar 

  • García-Fruitós E, Vázquez E, Díez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, Veciana J, Villaverde A (2012) Bacterial inclusion bodies: making gold from waste. Trends Biotechnol 30:65–70

    Article  PubMed  Google Scholar 

  • Gefen O, Fridman O, Ronin I, Balaban NQ (2014) Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc Natl Acad Sci U S A 111:556–561

    Article  CAS  PubMed  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Gründling A, Manson MD, Young R (2001) Holins kill without warning. Proc Natl Acad Sci U S A 98:9348–9352

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS (2008) Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochem Eng J 39:15–27

    Article  CAS  Google Scholar 

  • Li R, Zhang HX, Qi QS (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Appl Microbiol Biotechnol 98:2313–2320

    CAS  Google Scholar 

  • Li T, Chen XB, Chen JC, Wu Q, Chen GQ (2014) Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J 9:1503–1511

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Curtiss R (2009) Nickel-inducible lysis system in Synechocystis sp PCC 6803. Proc Natl Acad Sci U S A 106:21550–21554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamino T, Imae Y, Oosawa F, Kobayashi Y, Oosawa K (2003) Effect of intracellular pH on rotational speed of bacterial flagellar motors. J Bacteriol 185:1190–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park T, Struck DK, Deaton JF, Young R (2006) Topological dynamics of holins in programmed bacterial lysis. Proc Natl Acad Sci U S A 103:19713–19718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  PubMed  Google Scholar 

  • Pylypiw HM, Grether MT (2000) Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods. J Chromatogr A 883:299–304

    Article  CAS  PubMed  Google Scholar 

  • Resch S, Gruber K, Wanner G, Slater S, Dennis D, Lubitz W (1998) Aqueous release and purification of poly (β-hydroxybutyrate) from Escherichia coli. J Biotechnol 65:173–182

    Article  CAS  PubMed  Google Scholar 

  • Romano I, Giordano A, Lama L, Nicolaus B, Gambacorta A (2005) Halomonas campaniensis sp nov, a haloalkaliphilic bacterium isolated from a mineral pool of Campania region, Italy. Syst Appl Microbiol 28:610–618

    Article  CAS  PubMed  Google Scholar 

  • Salmond CV, Kroll RG, Booth IR (1984) The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol 130:2845–2850

    CAS  PubMed  Google Scholar 

  • Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de las Heras A, Platero R, de Lorenzo V (2013) The standard European vector architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:666–675

    Article  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  • Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65

    Article  CAS  PubMed  Google Scholar 

  • White R, Tran TA, Dankenbring CA, Deaton J, Young R (2010) The N-terminal transmembrane domain of λ S is required for holin but not antiholin function. J Bacteriol 192:725–733

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Li S, Ren C, Cai Z, Lin Z (2006) Heat-inducible autolytic vector for high-throughput screening. Biotechniques 41:319

    Article  CAS  PubMed  Google Scholar 

  • Young RY (1992) Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young RY (2002) Bacteriophage holins: deadly diversity. J Mol Microbiol 4:21–36

    CAS  Google Scholar 

  • Young RY, Wang N, Roof WD (2000) Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128

    Article  CAS  PubMed  Google Scholar 

  • Yue H, Ling C, Yang T, Chen X, Chen Y, Deng H, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7:108–119

    Article  Google Scholar 

  • Zhang X, Pan Z, Fang Q, Zheng J, Hu M, Jiao X (2009) An auto-inducible Escherichia coli lysis system controlled by magnesium. J Microbiol Methods 79:199–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Plasmid pSEVA311 was kindly donated by Prof. Victor de Lorenzo of Spanish National Centre of Biotechnology (CSIC, CNB, Syst Biol Program). This research was financially supported by 973 Basic Research Fund (Grant No. 2012CB725201) and a grant from National Natural Science Foundation of China (Grant No. 31430003).

Author contributions

Ivan Hajnal devised the experiments. Ivan Hajnal and Xiangbin Chen conducted the experiments. Guo-Qiang Chen supervised the studies and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajnal, I., Chen, X. & Chen, GQ. A novel cell autolysis system for cost-competitive downstream processing. Appl Microbiol Biotechnol 100, 9103–9110 (2016). https://doi.org/10.1007/s00253-016-7669-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7669-3

Keywords

Navigation