Applied Microbiology and Biotechnology

, Volume 100, Issue 12, pp 5289–5299 | Cite as

Terahertz spectroscopy for bacterial detection: opportunities and challenges

  • Xiang Yang
  • Ke Yang
  • Yang LuoEmail author
  • Weiling FuEmail author


The demand for advanced bacterial detection tools is continuously increasing, promoted by its significant benefits in various applications. For instance, in the medical field, these tools would facilitate decision making about more tailored therapies once the infection source has been identified. In the past few years, terahertz (THz = 1012 Hz) spectroscopy has also shown potential as a novel bacterial detection modality due to its unique advantages. Impressive breakthroughs have been achieved in this field related to bacterial component characterization, spore identification, and cell detection. However, some intrinsic limitations and technical bottlenecks have led to some debates about the practicability of its clinical adoption. In this review, we summarize the progress achieved in this field and discuss some challenges and strategies for future implementation of practical applications.


Bacterial detection Biosensor Rapid detection Terahertz time-domain spectroscopy Spore 


Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


This mini review was partially supported by the National Basic Research Program of China (2015CB755400), the National Natural Science Foundation of China (81430054, 81572079, 81371899), the Subproject of Military Science and Technology “12th Plan” Major Project (AWS11C001), and the Subproject of National Science and Technology Major Project (2012ZX10004801–003-006).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alijabbari N, Chen Y, Sizov I, Globus T, Gelmont B (2012) Molecular dynamics modeling of the sub-THz vibrational absorption of thioredoxin from E. coli. J Mol Model 18(5):2209–2218. doi: 10.1007/s00894-011-1238-6 CrossRefPubMedGoogle Scholar
  2. Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S (2011) Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 136(3):486–492. doi: 10.1039/c0an00697a CrossRefPubMedGoogle Scholar
  3. Auston DH, Nuss MC (1988) Electrooptical generation and detection of femtosecond electrical transients. IEEE J Quantum Electron 24(2):184–197. doi: 10.1109/3.114 CrossRefGoogle Scholar
  4. Belgrader P, Hansford D, Kovacs GT, Venkateswaran K, Mariella R, Milanovich F, Nasarabadi S, Okuzumi M, Pourahmadi F, Northrup MA (1999) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Anal Chem 71(19):4232–4236CrossRefPubMedGoogle Scholar
  5. van Belkum A, Durand G, Peyret M, Chatellier S, Zambardi G, Schrenzel J, Shortridge D, Engelhardt A, Dunne WM Jr (2013) Rapid clinical bacteriology and its future impact. Ann Lab Med 33(1):14–27. doi: 10.3343/alm.2013.33.1.14 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berrier A, Schaafsma MC, Nonglaton G, Bergquist J, Rivas JG (2012) Selective detection of bacterial layers with terahertz plasmonic antennas. Biomed Opt Express 3(11):2937–2949CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown ER, Bjarnason JE, Chan TLJ, Lee AWM, Celis MA (2004) Optical attenuation signatures of Bacillus subtilis in the THz region. Appl Phys Lett 84(18):3438–3440. doi: 10.1063/1.1711167 CrossRefGoogle Scholar
  8. Brown ER, Khromova TB, Globus T, Woolard DL, Jensen JO, Majewski A (2006) Terahertz-regime attenuation signatures in Bacillus subtilis and a model based on surface polariton effects. IEEE Sensors J 6(5):1076–1083. doi: 10.1109/jsen.2006.881354 CrossRefGoogle Scholar
  9. Brown ER, Mendoza EA, Xia D, Brueck SRJ (2010) Narrow THz spectral signatures through an RNA solution in nanofluidic channels. IEEE Sensors J 10(3):755–759. doi: 10.1109/jsen.2009.2039522 CrossRefGoogle Scholar
  10. Buchan BW, Ledeboer NA (2014) Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev 27(4):783–822. doi: 10.1128/cmr.00003-14 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Burke SA, Wright JD, Robinson MK, Bronk BV, Warren RL (2004) Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis. Appl Environ Microb 70(5):2786–2790. doi: 10.1128/aem.70.5.2786-2790.2004 CrossRefGoogle Scholar
  12. Bykhovski A, Globus T, Khromova T, Gelmont B, Woolard D (2007) An analysis of the THz frequency signatures in the cellular components of biological agents. Int J High Speed Electron Syst 17(02):225–237. doi: 10.1142/S012915640700445X CrossRefGoogle Scholar
  13. Bykhovski A, Li X, Globus T, Khromova T, Gelmont B, Woolard D, Samuels AC, Jensen JO (2005) THz absorption signature detection of genetic material of E. coli and B. subtilis. In: Proc SPIE 5995, Chemical and Biological Standoff Detection III, 2005. vol 5995. p 59950 NGoogle Scholar
  14. Chan WL, Deibel J, Mittleman DM (2007) Imaging with terahertz radiation. Rep Prog Phys 70(8):1325–1379. doi: 10.1088/0034-4885/70/8/r02 CrossRefGoogle Scholar
  15. Cook DJ, Decker BK, Dadusc G, Allen MG Through-container THz sensing: applications for biodetection. In: Proc SPIE 5268, Chemical and biological standoff detection, 2004. vol 5268. p 36–42Google Scholar
  16. El Haddad J, Bousquet B, Canioni L, Mounaix P (2013) Review in terahertz spectral analysis. Trends Anal Chem 44:98–105. doi: 10.1016/j.trac.2012.11.009 CrossRefGoogle Scholar
  17. Fan S, He Y, Ung BS, Pickwell-MacPherson E (2014) The growth of biomedical terahertz research. J Phys D Appl Phys 47(37):374009CrossRefGoogle Scholar
  18. Fattinger C, Grischkowsky D (1988) Point source terahertz optics. Appl Phys Lett 53(16):1480–1482CrossRefGoogle Scholar
  19. Fattinger C, Grischkowsky D (1989) Terahertz beams. Appl Phys Lett 54(6):490–492CrossRefGoogle Scholar
  20. Ferguson B, Zhang X-C (2002) Materials for terahertz science and technology. Nat Mater 1(1):26–33. doi: 10.1038/nmat708 CrossRefPubMedGoogle Scholar
  21. Fischer BM, Hoffmann M, Helm H, Wilk R, Rutz F, Kleine-Ostmann T, Koch M, Jepsen PU (2005) Terahertz time-domain spectroscopy and imaging of artificial RNA. Opt Express 13(14):5205–5215. doi: 10.1364/opex.13.005205 CrossRefPubMedGoogle Scholar
  22. Fitch MJ, Dodson C, Ziomek DS, Osiander R Time-domain terahertz spectroscopy of bioagent simulants. In: Proc SPIE 5584, Chemical and biological standoff detection II, 2004. vol 5584. International Society for Optics and Photonics, p 16–22Google Scholar
  23. Globus T, Dorofeeva T, Sizov I, Gelmont B, Lvovska M, Khromova T, Chertihin O, Koryakina Y (2012) Sub-THz vibrational spectroscopy of bacterial cells and molecular components. Am J Biomed Eng 2(4):143–154CrossRefGoogle Scholar
  24. Globus T, Sizov I, Gelmont B (2013) Teraherz vibrational spectroscopy of and molecular constituents: computational modeling and experiment. Adv Biosci Biotech 4(3):493–503CrossRefGoogle Scholar
  25. Gowen AA, O’Sullivan C, O’Donnell CP (2012) Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci Tech 25(1):40–46. doi: 10.1016/j.tifs.2011.12.006 CrossRefGoogle Scholar
  26. Grischkowsky D, Keiding S, van Exter M, Fattinger C (1990) Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B 7(10):2006–2015. doi: 10.1364/josab.7.002006 CrossRefGoogle Scholar
  27. Grognot M, Gallot G (2015) Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection. Appl Phys Lett 107(10):103702. doi: 10.1063/1.4930168 CrossRefGoogle Scholar
  28. Irenge LM, Gala J-L (2012) Rapid detection methods for Bacillus anthracis in environmental samples: a review. Appl Microbiol Biot 93(4):1411–1422. doi: 10.1007/s00253-011-3845-7 CrossRefGoogle Scholar
  29. Ishii S, Tago K, Senoo K (2010) Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl Microbiol Biot 86(5):1281–1292. doi: 10.1007/s00253-010-2524-4 CrossRefGoogle Scholar
  30. Kindt J, Schmuttenmaer C (1996) Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J Phys Chem 100(24):10373–10379CrossRefGoogle Scholar
  31. Lazcka O, Campo FJD, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217. doi: 10.1016/j.bios.2006.06.036 CrossRefPubMedGoogle Scholar
  32. Leuschner RG, Lillford PJ (2001) Investigation of bacterial spore structure by high resolution solid-state nuclear magnetic resonance spectroscopy and transmission electron microscopy. Int J Food Microbiol 63(1–2):35–50. doi: 10.1016/s0168-1605(00)00396-2 CrossRefPubMedGoogle Scholar
  33. Liu H-B, Plopper G, Earley S, Chen Y, Ferguson B, Zhang XC (2007) Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy. Biosens Bioelectron 22(6):1075–1080. doi: 10.1016/j.bios.2006.02.021 CrossRefPubMedGoogle Scholar
  34. Majewski AJ, Miller P, Abreu R, Grotts J, Globus T, Brown E Terahertz signature characterization of bio-simulants. In: Proc SPIE 5790, Terahertz for military and security applications III, 2005. vol 5790. p 74–84Google Scholar
  35. Markovich RJ, Pidgeon C (1991) Introduction to Fourier transform infrared spectroscopy and applications in the pharmaceutical sciences. Pharm Res 8(6):663–675. doi: 10.1023/a:1015829412658 CrossRefPubMedGoogle Scholar
  36. Masini L, Meucci S, Xu J, Degl’Innocenti R, Castellano F, Beere HE, Ritchie D, Balduzzi D, Puglisi R, Galli A, Beltram F, Vitiello MS, Cecchini M, Tredicucci A (2014) Terahertz probe of individual subwavelength objects in a water environment. Laser Photonics Rev 8(5):734–742. doi: 10.1002/lpor.201300224 CrossRefGoogle Scholar
  37. Mazhorova A, Markov A, Ng A, Chinnappan R, Skorobogata O, Zourob M, Skorobogatiy M (2012) Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber. Opt Express 20(5):5344–5355. doi: 10.1364/oe.20.005344 CrossRefPubMedGoogle Scholar
  38. Nocker A, Cheung C-Y, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Meth 67(2):310–320. doi: 10.1016/j.mimet.2006.04.015 CrossRefGoogle Scholar
  39. Pahlow S, Meisel S, Cialla-May D, Weber K, Roesch P, Popp J (2015) Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliver Rev 89:105–120. doi: 10.1016/j.addr.2015.04.006 CrossRefGoogle Scholar
  40. Paidhungat M, Setlow B, Driks A, Setlow P (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol 182(19):5505–5512CrossRefPubMedPubMedCentralGoogle Scholar
  41. Park H-R, Ahn KJ, Han S, Bahk Y-M, Park N, Kim D-S (2013) Colossal absorption of molecules inside single terahertz nanoantennas. Nano Lett 13(4):1782–1786. doi: 10.1021/nl400374z CrossRefPubMedGoogle Scholar
  42. Park SJ, Hong JT, Choi SJ, Kim HS, Park WK, Han ST, Park JY, Lee S, Kim DS, Ahn YH (2014) Detection of microorganisms using terahertz metamaterials. Sci Rep 4:4988. doi: 10.1038/srep04988 PubMedPubMedCentralGoogle Scholar
  43. Pickwell E, Wallace VP (2006) Biomedical applications of terahertz technology. J Phys D Appl Phys 39(17):R301–R310. doi: 10.1088/0022-3727/39/17/r01 CrossRefGoogle Scholar
  44. Preu S, Döhler GH, Malzer S, Wang LJ, Gossard AC (2011) Tunable, continuous-wave Terahertz photomixer sources and applications. J Appl Phys 109(6):061301. doi: 10.1063/1.3552291 CrossRefGoogle Scholar
  45. Qin J, Ying Y, Xie L (2013) The detection of agricultural products and food using terahertz spectroscopy: a review. Appl Spectrosc Rev 48(6):439–457. doi: 10.1080/05704928.2012.745418 CrossRefGoogle Scholar
  46. Redo-Sanchez A, Laman N, Schulkin B, Tongue T (2013) Review of terahertz technology readiness assessment and applications. J Infrared Millim Te 34(9):500–518. doi: 10.1007/s10762-013-9998-y CrossRefGoogle Scholar
  47. Russell A (1990) Bacterial spores and chemical sporicidal agents. Clin Microbiol Rev 3(2):99–119PubMedPubMedCentralGoogle Scholar
  48. Shiraga K, Suzuki T, Kondo N, Tanaka K, Ogawa Y (2015) Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy. Appl Phys Lett 106(25):253701. doi: 10.1063/1.4922918 CrossRefGoogle Scholar
  49. Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25(3):132–137. doi: 10.1016/j.tibtech.2007.01.003 CrossRefPubMedGoogle Scholar
  50. Wang C, Gong J, Xing Q, Li Y, Liu F, Zhao X, Chai L, Wang C, Zheltikov AM (2010) Application of terahertz time-domain spectroscopy in intracellular metabolite detection. J Biophotonics 3(10–11):641–645. doi: 10.1002/jbio.201000043 CrossRefPubMedGoogle Scholar
  51. Wang S, Ferguson B, Mannella C, Abbott D, Zhang X-C Powder detection using THz imaging. In: Quantum Electronics and Laser Science Conference, Long Beach, California, 2002/05/19 2002. OSA Technical Digest. Optical Society of America, p 44Google Scholar
  52. Williams BS (2007) Terahertz quantum-cascade lasers. Nat Photonics 1(9):517–525. doi: 10.1038/nphoton.2007.166 CrossRefGoogle Scholar
  53. Wilmink GJ, Ibey BL, Tongue T, Schulkin B, Laman N, Peralta XG, Roth CC, Cerna CZ, Rivest BD, Grundt JE, Roach WP (2011) Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. J Biomed Opt 16(4):047006. doi: 10.1117/1.3570648 CrossRefPubMedGoogle Scholar
  54. Xiang K, Li Y, Ford W, Land W, Schaffer JD, Congdon R, Zhang J, Sadik O (2016) Automated analysis of food-borne pathogens using a novel microbial cell culture, sensing and classification system. Analyst 141(4):1472–1482. doi: 10.1039/c5an02614h CrossRefPubMedGoogle Scholar
  55. Xie L, Gao W, Shu J, Ying Y, Kono J (2015) Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Sci Rep 5:8671. doi: 10.1038/srep08671 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yang X, Wei D, Yan S, Liu Y, Yu S, Zhang M, Yang Z, Zhu X, Huang Q, Cui H-L, Fu W (2016) Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy. J Biophotonics. doi: 10.1002/jbio.201500270 Google Scholar
  57. Yu B, Alimova A, Katz A, Alfano RR THz absorption spectrum of Bacillus subtilis spores. In: Proc SPIE 5727, Terahertz and Gigahertz Electronics and Photonics IV, Long Beach, CA, USA, 2005. vol 5727. International Society for Optics and Photonics, p 20–23Google Scholar
  58. Zhang W, Brown E, Rahman M, Norton M (2013) Observation of terahertz absorption signatures in microliter DNA solutions. Appl Phys Lett 102(2):023701CrossRefGoogle Scholar
  59. Zhang W, Brown ER, Viveros L, Burris KP, Stewart CN Jr (2014) Narrow terahertz attenuation signatures in Bacillus thuringiensis. J Biophotonics 7(10):818–824. doi: 10.1002/jbio.201300042 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, Southwest HospitalThird Military Medical UniversityChongqingChina
  2. 2.Medical Research Center, Southwest HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations