Skip to main content

Advertisement

Log in

Terahertz spectroscopy for bacterial detection: opportunities and challenges

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The demand for advanced bacterial detection tools is continuously increasing, promoted by its significant benefits in various applications. For instance, in the medical field, these tools would facilitate decision making about more tailored therapies once the infection source has been identified. In the past few years, terahertz (THz = 1012 Hz) spectroscopy has also shown potential as a novel bacterial detection modality due to its unique advantages. Impressive breakthroughs have been achieved in this field related to bacterial component characterization, spore identification, and cell detection. However, some intrinsic limitations and technical bottlenecks have led to some debates about the practicability of its clinical adoption. In this review, we summarize the progress achieved in this field and discuss some challenges and strategies for future implementation of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alijabbari N, Chen Y, Sizov I, Globus T, Gelmont B (2012) Molecular dynamics modeling of the sub-THz vibrational absorption of thioredoxin from E. coli. J Mol Model 18(5):2209–2218. doi:10.1007/s00894-011-1238-6

    Article  CAS  PubMed  Google Scholar 

  • Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S (2011) Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 136(3):486–492. doi:10.1039/c0an00697a

    Article  CAS  PubMed  Google Scholar 

  • Auston DH, Nuss MC (1988) Electrooptical generation and detection of femtosecond electrical transients. IEEE J Quantum Electron 24(2):184–197. doi:10.1109/3.114

    Article  Google Scholar 

  • Belgrader P, Hansford D, Kovacs GT, Venkateswaran K, Mariella R, Milanovich F, Nasarabadi S, Okuzumi M, Pourahmadi F, Northrup MA (1999) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Anal Chem 71(19):4232–4236

    Article  CAS  PubMed  Google Scholar 

  • van Belkum A, Durand G, Peyret M, Chatellier S, Zambardi G, Schrenzel J, Shortridge D, Engelhardt A, Dunne WM Jr (2013) Rapid clinical bacteriology and its future impact. Ann Lab Med 33(1):14–27. doi:10.3343/alm.2013.33.1.14

    Article  PubMed  PubMed Central  Google Scholar 

  • Berrier A, Schaafsma MC, Nonglaton G, Bergquist J, Rivas JG (2012) Selective detection of bacterial layers with terahertz plasmonic antennas. Biomed Opt Express 3(11):2937–2949

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown ER, Bjarnason JE, Chan TLJ, Lee AWM, Celis MA (2004) Optical attenuation signatures of Bacillus subtilis in the THz region. Appl Phys Lett 84(18):3438–3440. doi:10.1063/1.1711167

    Article  CAS  Google Scholar 

  • Brown ER, Khromova TB, Globus T, Woolard DL, Jensen JO, Majewski A (2006) Terahertz-regime attenuation signatures in Bacillus subtilis and a model based on surface polariton effects. IEEE Sensors J 6(5):1076–1083. doi:10.1109/jsen.2006.881354

    Article  CAS  Google Scholar 

  • Brown ER, Mendoza EA, Xia D, Brueck SRJ (2010) Narrow THz spectral signatures through an RNA solution in nanofluidic channels. IEEE Sensors J 10(3):755–759. doi:10.1109/jsen.2009.2039522

    Article  CAS  Google Scholar 

  • Buchan BW, Ledeboer NA (2014) Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev 27(4):783–822. doi:10.1128/cmr.00003-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke SA, Wright JD, Robinson MK, Bronk BV, Warren RL (2004) Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis. Appl Environ Microb 70(5):2786–2790. doi:10.1128/aem.70.5.2786-2790.2004

    Article  CAS  Google Scholar 

  • Bykhovski A, Globus T, Khromova T, Gelmont B, Woolard D (2007) An analysis of the THz frequency signatures in the cellular components of biological agents. Int J High Speed Electron Syst 17(02):225–237. doi:10.1142/S012915640700445X

    Article  CAS  Google Scholar 

  • Bykhovski A, Li X, Globus T, Khromova T, Gelmont B, Woolard D, Samuels AC, Jensen JO (2005) THz absorption signature detection of genetic material of E. coli and B. subtilis. In: Proc SPIE 5995, Chemical and Biological Standoff Detection III, 2005. vol 5995. p 59950 N

  • Chan WL, Deibel J, Mittleman DM (2007) Imaging with terahertz radiation. Rep Prog Phys 70(8):1325–1379. doi:10.1088/0034-4885/70/8/r02

    Article  Google Scholar 

  • Cook DJ, Decker BK, Dadusc G, Allen MG Through-container THz sensing: applications for biodetection. In: Proc SPIE 5268, Chemical and biological standoff detection, 2004. vol 5268. p 36–42

  • El Haddad J, Bousquet B, Canioni L, Mounaix P (2013) Review in terahertz spectral analysis. Trends Anal Chem 44:98–105. doi:10.1016/j.trac.2012.11.009

    Article  Google Scholar 

  • Fan S, He Y, Ung BS, Pickwell-MacPherson E (2014) The growth of biomedical terahertz research. J Phys D Appl Phys 47(37):374009

    Article  Google Scholar 

  • Fattinger C, Grischkowsky D (1988) Point source terahertz optics. Appl Phys Lett 53(16):1480–1482

    Article  Google Scholar 

  • Fattinger C, Grischkowsky D (1989) Terahertz beams. Appl Phys Lett 54(6):490–492

    Article  Google Scholar 

  • Ferguson B, Zhang X-C (2002) Materials for terahertz science and technology. Nat Mater 1(1):26–33. doi:10.1038/nmat708

    Article  CAS  PubMed  Google Scholar 

  • Fischer BM, Hoffmann M, Helm H, Wilk R, Rutz F, Kleine-Ostmann T, Koch M, Jepsen PU (2005) Terahertz time-domain spectroscopy and imaging of artificial RNA. Opt Express 13(14):5205–5215. doi:10.1364/opex.13.005205

    Article  CAS  PubMed  Google Scholar 

  • Fitch MJ, Dodson C, Ziomek DS, Osiander R Time-domain terahertz spectroscopy of bioagent simulants. In: Proc SPIE 5584, Chemical and biological standoff detection II, 2004. vol 5584. International Society for Optics and Photonics, p 16–22

  • Globus T, Dorofeeva T, Sizov I, Gelmont B, Lvovska M, Khromova T, Chertihin O, Koryakina Y (2012) Sub-THz vibrational spectroscopy of bacterial cells and molecular components. Am J Biomed Eng 2(4):143–154

    Article  Google Scholar 

  • Globus T, Sizov I, Gelmont B (2013) Teraherz vibrational spectroscopy of and molecular constituents: computational modeling and experiment. Adv Biosci Biotech 4(3):493–503

    Article  Google Scholar 

  • Gowen AA, O’Sullivan C, O’Donnell CP (2012) Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci Tech 25(1):40–46. doi:10.1016/j.tifs.2011.12.006

    Article  CAS  Google Scholar 

  • Grischkowsky D, Keiding S, van Exter M, Fattinger C (1990) Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B 7(10):2006–2015. doi:10.1364/josab.7.002006

    Article  CAS  Google Scholar 

  • Grognot M, Gallot G (2015) Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection. Appl Phys Lett 107(10):103702. doi:10.1063/1.4930168

    Article  Google Scholar 

  • Irenge LM, Gala J-L (2012) Rapid detection methods for Bacillus anthracis in environmental samples: a review. Appl Microbiol Biot 93(4):1411–1422. doi:10.1007/s00253-011-3845-7

    Article  CAS  Google Scholar 

  • Ishii S, Tago K, Senoo K (2010) Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl Microbiol Biot 86(5):1281–1292. doi:10.1007/s00253-010-2524-4

    Article  CAS  Google Scholar 

  • Kindt J, Schmuttenmaer C (1996) Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J Phys Chem 100(24):10373–10379

    Article  CAS  Google Scholar 

  • Lazcka O, Campo FJD, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217. doi:10.1016/j.bios.2006.06.036

    Article  CAS  PubMed  Google Scholar 

  • Leuschner RG, Lillford PJ (2001) Investigation of bacterial spore structure by high resolution solid-state nuclear magnetic resonance spectroscopy and transmission electron microscopy. Int J Food Microbiol 63(1–2):35–50. doi:10.1016/s0168-1605(00)00396-2

    Article  CAS  PubMed  Google Scholar 

  • Liu H-B, Plopper G, Earley S, Chen Y, Ferguson B, Zhang XC (2007) Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy. Biosens Bioelectron 22(6):1075–1080. doi:10.1016/j.bios.2006.02.021

    Article  CAS  PubMed  Google Scholar 

  • Majewski AJ, Miller P, Abreu R, Grotts J, Globus T, Brown E Terahertz signature characterization of bio-simulants. In: Proc SPIE 5790, Terahertz for military and security applications III, 2005. vol 5790. p 74–84

  • Markovich RJ, Pidgeon C (1991) Introduction to Fourier transform infrared spectroscopy and applications in the pharmaceutical sciences. Pharm Res 8(6):663–675. doi:10.1023/a:1015829412658

    Article  CAS  PubMed  Google Scholar 

  • Masini L, Meucci S, Xu J, Degl’Innocenti R, Castellano F, Beere HE, Ritchie D, Balduzzi D, Puglisi R, Galli A, Beltram F, Vitiello MS, Cecchini M, Tredicucci A (2014) Terahertz probe of individual subwavelength objects in a water environment. Laser Photonics Rev 8(5):734–742. doi:10.1002/lpor.201300224

    Article  Google Scholar 

  • Mazhorova A, Markov A, Ng A, Chinnappan R, Skorobogata O, Zourob M, Skorobogatiy M (2012) Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber. Opt Express 20(5):5344–5355. doi:10.1364/oe.20.005344

    Article  PubMed  Google Scholar 

  • Nocker A, Cheung C-Y, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Meth 67(2):310–320. doi:10.1016/j.mimet.2006.04.015

    Article  CAS  Google Scholar 

  • Pahlow S, Meisel S, Cialla-May D, Weber K, Roesch P, Popp J (2015) Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliver Rev 89:105–120. doi:10.1016/j.addr.2015.04.006

    Article  CAS  Google Scholar 

  • Paidhungat M, Setlow B, Driks A, Setlow P (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol 182(19):5505–5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H-R, Ahn KJ, Han S, Bahk Y-M, Park N, Kim D-S (2013) Colossal absorption of molecules inside single terahertz nanoantennas. Nano Lett 13(4):1782–1786. doi:10.1021/nl400374z

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Hong JT, Choi SJ, Kim HS, Park WK, Han ST, Park JY, Lee S, Kim DS, Ahn YH (2014) Detection of microorganisms using terahertz metamaterials. Sci Rep 4:4988. doi:10.1038/srep04988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pickwell E, Wallace VP (2006) Biomedical applications of terahertz technology. J Phys D Appl Phys 39(17):R301–R310. doi:10.1088/0022-3727/39/17/r01

    Article  CAS  Google Scholar 

  • Preu S, Döhler GH, Malzer S, Wang LJ, Gossard AC (2011) Tunable, continuous-wave Terahertz photomixer sources and applications. J Appl Phys 109(6):061301. doi:10.1063/1.3552291

    Article  Google Scholar 

  • Qin J, Ying Y, Xie L (2013) The detection of agricultural products and food using terahertz spectroscopy: a review. Appl Spectrosc Rev 48(6):439–457. doi:10.1080/05704928.2012.745418

    Article  Google Scholar 

  • Redo-Sanchez A, Laman N, Schulkin B, Tongue T (2013) Review of terahertz technology readiness assessment and applications. J Infrared Millim Te 34(9):500–518. doi:10.1007/s10762-013-9998-y

    Article  Google Scholar 

  • Russell A (1990) Bacterial spores and chemical sporicidal agents. Clin Microbiol Rev 3(2):99–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraga K, Suzuki T, Kondo N, Tanaka K, Ogawa Y (2015) Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy. Appl Phys Lett 106(25):253701. doi:10.1063/1.4922918

    Article  Google Scholar 

  • Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25(3):132–137. doi:10.1016/j.tibtech.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Gong J, Xing Q, Li Y, Liu F, Zhao X, Chai L, Wang C, Zheltikov AM (2010) Application of terahertz time-domain spectroscopy in intracellular metabolite detection. J Biophotonics 3(10–11):641–645. doi:10.1002/jbio.201000043

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Ferguson B, Mannella C, Abbott D, Zhang X-C Powder detection using THz imaging. In: Quantum Electronics and Laser Science Conference, Long Beach, California, 2002/05/19 2002. OSA Technical Digest. Optical Society of America, p 44

  • Williams BS (2007) Terahertz quantum-cascade lasers. Nat Photonics 1(9):517–525. doi:10.1038/nphoton.2007.166

    Article  CAS  Google Scholar 

  • Wilmink GJ, Ibey BL, Tongue T, Schulkin B, Laman N, Peralta XG, Roth CC, Cerna CZ, Rivest BD, Grundt JE, Roach WP (2011) Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. J Biomed Opt 16(4):047006. doi:10.1117/1.3570648

    Article  PubMed  Google Scholar 

  • Xiang K, Li Y, Ford W, Land W, Schaffer JD, Congdon R, Zhang J, Sadik O (2016) Automated analysis of food-borne pathogens using a novel microbial cell culture, sensing and classification system. Analyst 141(4):1472–1482. doi:10.1039/c5an02614h

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Gao W, Shu J, Ying Y, Kono J (2015) Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Sci Rep 5:8671. doi:10.1038/srep08671

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wei D, Yan S, Liu Y, Yu S, Zhang M, Yang Z, Zhu X, Huang Q, Cui H-L, Fu W (2016) Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy. J Biophotonics. doi:10.1002/jbio.201500270

    Google Scholar 

  • Yu B, Alimova A, Katz A, Alfano RR THz absorption spectrum of Bacillus subtilis spores. In: Proc SPIE 5727, Terahertz and Gigahertz Electronics and Photonics IV, Long Beach, CA, USA, 2005. vol 5727. International Society for Optics and Photonics, p 20–23

  • Zhang W, Brown E, Rahman M, Norton M (2013) Observation of terahertz absorption signatures in microliter DNA solutions. Appl Phys Lett 102(2):023701

    Article  Google Scholar 

  • Zhang W, Brown ER, Viveros L, Burris KP, Stewart CN Jr (2014) Narrow terahertz attenuation signatures in Bacillus thuringiensis. J Biophotonics 7(10):818–824. doi:10.1002/jbio.201300042

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Luo or Weiling Fu.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Funding

This mini review was partially supported by the National Basic Research Program of China (2015CB755400), the National Natural Science Foundation of China (81430054, 81572079, 81371899), the Subproject of Military Science and Technology “12th Plan” Major Project (AWS11C001), and the Subproject of National Science and Technology Major Project (2012ZX10004801–003-006).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yang, K., Luo, Y. et al. Terahertz spectroscopy for bacterial detection: opportunities and challenges. Appl Microbiol Biotechnol 100, 5289–5299 (2016). https://doi.org/10.1007/s00253-016-7569-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7569-6

Keywords

Navigation