Skip to main content
Log in

Outer membrane vesicles of Lysobacter sp. XL1: biogenesis, functions, and applied prospects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have been intensively investigated in recent times. Vesicle formation models have been proposed, some factors affecting the process were established, and important roles vesicles play in vital activities of their producing cells were determined. Studies of pathogenic bacterial vesicles contribute to understanding the causes of acute infection and developing drugs on their basis. Despite intensive research, issues associated with the understanding of vesicle biogenesis, the mechanisms of bacterium–bacterium and pathogen–host interactions with participation of vesicles, still remain unresolved. This review discusses some results obtained in the research into OMVs of Lysobacter sp. XL1 VKM B-1576. This bacterium secretes into the environment a spectrum of bacteriolytic enzymes that hydrolyze peptidoglycan of competing bacteria, thus leading to their lysis. One of these enzymes, lytic endopeptidase L5, has been shown not only to be secreted by means of vesicles but also to be involved in their formation. As part of vesicles, the antimicrobial potential of L5 enzyme has been found to be considerably expanded. Vesicles have been shown to have a therapeutic effect in respect of anthrax infection and staphylococcal sepsis modelled in mice. The scientific basis for constructing liposomal antimicrobial preparations from vesicle phospholipids and recombinant bacteriolytic enzyme L5 has been formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed K, Chohnan S, Ohashi H, Hirata T, Masaki T, Sakiyama F (2003) Purification, bacteriolytic activity, and specificity of beta-lytic protease from Lysobacter sp. IB-9374. J Biosci Bioeng 95:27–34. doi:10.1263/jbb.95.27

    Article  PubMed  Google Scholar 

  • Amano A, Takeuchi H, Furuta N (2010) Outer membrane vesicles function as offensive weapons in host–parasite interactions. Microbes Infect 12:791–798. doi:10.1016/j.micinf.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  • Avila-Calderón ED, Araiza-Villanueva MG, Cancino-Diaz JC, Lopez-Villegas EO, Sriranganathan N, Boyle SM, Contreras-Rodríguez A (2015) Roles of bacterial membrane vesicles. Arch Microbiol 197:1–10. doi:10.1007/s00203-014-1042-7

    Article  PubMed  Google Scholar 

  • Balsalobre C, Silvan JM, Berglund S, Mizunoe Y, Uhlin BE, Wai SN (2006) Release of the type I secreted α-haemolysin via outer membrane vesicles from Escherichia coli. Mol Microbiol 59:99–112. doi:10.1111/j.1365-2958.2005.04938.x

    Article  CAS  PubMed  Google Scholar 

  • Begunova EA, Stepnaya OA, Lysanskaya VY, Kulaev IS (2003) Specificity of the action of lysoamidase on Staphylococcus aureus 209P cell walls. Biochemistry (Mosc) 68:735–739. doi:10.1023/A:1025074714910

    Article  CAS  Google Scholar 

  • Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW (2014) Bacterial vesicles in marine ecosystems. Science 343:183–186. doi:10.1126/science.1243457

    Article  CAS  PubMed  Google Scholar 

  • Bone R, Frank D, Kettner CA, Agard DA (1989) Structural analysis of specificity: alpha-lytic protease complexes with analogues of reaction intermediates. Biochemistry 28:7600–7609. doi:10.1021/bi00445a015

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee SN, Das J (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol 49:1–11. doi:10.1099/00221287-49-1-1

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury C, Jagannadham MV (2013) Virulence factors are released in association with outer membrane vesicles of Pseudomonas syringae pv. tomato T1 during normal growth. Biochim Biophys Acta 1834:231–239. doi:10.1016/j.bbapap.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393. doi:10.1099/00207713-28-3-367

    Article  Google Scholar 

  • Cimmino A, Puopolo G, Perazzolli M, Andolfi A, Melck D, Pertot I, Evidente A (2014) Cyclo(L-PRO-L-TYR), the fungicide isolated from Lysobacter capsici AZ78: a structure–activity relationship study. Chem Heterocycl Compd 50:290–295. doi:10.1007/s10593-014-1475-6

    Article  CAS  Google Scholar 

  • Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N (2000) Chromosomal β-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45:9–13. doi:10.1093/jac/45.1.9

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn I, Cheng X, de Jager V, Expósito RG, Watrous J, Patel N, Postma J, Dorrestein PC, Kobayashi D, Raaijmakers JM (2015) Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 16:991. doi:10.1186/s12864-015-2191-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94. doi:10.1128/MMBR.00031-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans AG, Davey HM, Cookson A, Currinn H, Cooke-Fox G, Stanczyk PJ, Whitworth DE (2012) Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 158:2742–2752. doi:10.1099/mic.0.060343-0

    Article  CAS  PubMed  Google Scholar 

  • Fujishige A, Smith KR, Silen JL, Agard DA (1992) Correct folding of α-lytic protease is required for its extracellular secretion from Escherichia coli. J Cell Biol 118:33–42

    Article  CAS  PubMed  Google Scholar 

  • Gostev VV, Kalinogorskaya OS, Popenko LN, Chernenkaya TV, Naumenko ZS, Voroshilova TM, Zakharova YA, Khokhlova OE, Kruglov AN, Ershova MG, Molchanova IV, Sidorenko SV (2015) Antibiotic Resistance of MRSA in the Russian Federation Antibiot Khimioter(in Russian) 60: 3–9

  • Granovsky IE, Kalinin AE, Lapteva YS, Latypov OR, Vasilyeva NV, Tsfasman IM, Stepnaya OA, Kulaev IS, Muranova TA, Krasovskaya LA (2010) Lytic protease AlpA of the bacterium Lysobacter sp. XL1, a DNA fragment coding for lytic protease AlpA of the bacterium Lysobacter sp. XL1, and a method of producing lytic protease AlpA of the bacterium Lysobacter sp. XL1 RF Patent No. 2407782 (in Russian)

  • Granovsky IE, Kalinin AE, Lapteva YS, Latypov OR, Vasilyeva NV, Tsfasman IM, Stepnaya OA, Kulaev IS, Muranova TA, Krasovskaya LA (2011) Lytic protease AlpB of the bacterium Lysobacter sp. XL1, a DNA fragment coding for lytic protease AlpB of the bacterium Lysobacter sp. XL1, and a method of producing lytic protease AlpB of the bacterium Lysobacter sp. XL1 RF Patent No. 2408725 (in Russian)

  • Gregoriadis G (2007) Liposome technology, third edn. Informa Healthcare, New York–London

    Google Scholar 

  • Haurat MF, Aduse Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, Feldman MF (2011) Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem 286:1269–1276. doi:10.1074/jbc.M110.185744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi J, Hamada N, Kuramitsu HK (2002) The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release. FEMS Microbiol Lett 216:217–222. doi:10.1111/j.1574-6968.2002.tb11438.x

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra D, van der Laan JW, de Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455:889–899

    Article  CAS  PubMed  Google Scholar 

  • Horstman AL, Kuehn MJ (2000) Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 275:12489–12496. doi:10.1074/jbc.275.17.12489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2767–2774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1997) Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 40:615–621. doi:10.1093/jac/40.5.615

    Article  CAS  PubMed  Google Scholar 

  • Kaparakis-Liaskos M, Ferrero RL (2015) Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol 15:375–387. doi:10.1038/nri3837

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Nakaya S, Kokubo N, Aiba Y, Ohashi Y, Hirata H, Fujii K, Harada K (1998) A new anti-MRSA antibiotic complex, WAP-8294A. I. Taxonomy, isolation and biological activities. J Antibiot (Tokyo) 51:929–935. doi:10.7164/antibiotics.51.929

    Article  CAS  Google Scholar 

  • Kato S, Kowashi Y, Demuth DR (2002) Outer membrane-like vesicles secreted by Acinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog 32:1–13. doi:10.1006/mpat.2001.0474

    Article  CAS  PubMed  Google Scholar 

  • Ko HS, Jin RD, Krishnan HB, Lee SB, Kim KY (2009) Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Curr Microbiol 59:608–615. doi:10.1007/s00284-009-9481-0

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182:6451–6455. doi:10.1128/JB.182.22.6451-6455.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryakova IV, Suzina NE, Vasilyeva NV (2015) Biogenesis of Lysobacter sp. XL1 vesicles. FEMS Microbiol Lett:362. doi:10.1093/femsle/fnv137

  • Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host–pathogen interaction. Genes Dev 19:2645–2655. doi:10.1101/gad.1299905

    Article  CAS  PubMed  Google Scholar 

  • Kulaev IS, Stepnaya OA, Tsfasman IM, Tchermenskaja TS, Ledova LA, Zubrizkaja LG, Akimenko VK (2006) Bacteriolytic complex, method for producing said complex and strain for carrying out said method. U.S. Patent 7150985 B2

  • Kulkarni HM, Swamy CV, Jagannadham MV (2014) Molecular characterization and functional analysis of outer membrane vesicles from the antarctic bacterium Pseudomonas syringae suggest a possible response to environmental conditions. J Proteome Res 13:1345–1358. doi:10.1021/pr4009223

    Article  CAS  PubMed  Google Scholar 

  • Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184. doi:10.1146/annurev.micro.091208.073413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapteva YS, Zolova OE, Shlyapnikov MG, Tsfasman IM, Muranova TA, Stepnaya OA, Kulaev IS, Granovsky IE (2012) Cloning and expression analysis of genes encoding lytic endopeptidases L1 and L5 from Lysobacter sp. strain XL1. Appl Environ Microbiol 8:7082–7089. doi:10.1128/AEM.01621-12

    Article  Google Scholar 

  • Lee EY, Choi DS, Kim KP, Gho YS (2008) Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev 27:535–555. doi:10.1002/mas.20175

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Clarke AJ, Beveridge TJ (1996) A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol 178:2479–2488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Clarke AJ, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180:5478–5483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846. doi:10.1111/j.1365-2958.2006.05272.x

    Article  CAS  PubMed  Google Scholar 

  • Mashburn-Warren L, McLean RJ, Whiteley M (2008) Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6:214–219. doi:10.1111/j.1472-4669.2008.00157.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayrand D, Grenier D (1989) Biological activities of outer membrane vesicles. Can J Microbiol 35:607–613. doi:10.1139/m89-097

    Article  CAS  PubMed  Google Scholar 

  • McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558. doi:10.1111/j.1365-2958.2006.05522.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon DC, Choi CH, Lee JH, Choi CW, Kim HY, Park JS, Kim SI, Lee JC (2012) Acinetobacter baumannii outer membrane protein a modulates the biogenesis of outer membrane vesicles. J Microbiol 50:155–160. doi:10.1007/s12275-012-1589-4

    Article  CAS  PubMed  Google Scholar 

  • Ogura J, Toyoda A, Kurosawa T, Chong AL, Chohnan S, Masaki T (2006) Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374. Biosci Biotechnol Biochem 70:2420–2428. doi:10.1271/bbb.60157

    Article  CAS  PubMed  Google Scholar 

  • Olofsson A, Vallström A, Petzold K, Tegtmeyer N, Schleucher J, Carlsson S, Haas R, Backert S, Wai SN, Gröbner G, Arnqvist A (2010) Biochemical and functional characterization of Helicobacter pylori vesicles. Mol Microbiol 77:1539–1555. doi:10.1111/j.1365-2958.2010.07307.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsson A, Nygård Skalman L, Obi I, Lundmark R, Arnqvist A (2014) Uptake of Helicobacter pylori vesicles is facilitated by clathrin-dependent and clathrin-independent endocytic pathways. MBio 5:e00979–e00914. doi:10.1128/mBio.00979-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen I, Amano A (2015) Outer membrane vesicles—offensive weapons or good Samaritans? J Oral Microbiol 7:27468. doi:10.3402/jom.v7.27468

    PubMed  Google Scholar 

  • Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three beta-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 185:4362–4370. doi:10.1128/JB.185.15.4362-4370.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707. doi:10.1094/PHYTO-95-0701

  • Pérez-Cruz C, Carrion O, Delgado L, Martinez G, Lopez-Iglesias C, Mercade E (2013) New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content. Appl Environ Microbiol 79:1874–1881. doi:10.1128/AEM.03657-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Cruz C, Delgado L, López-Iglesias C, Mercade E (2015) Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One 10:e0116896. doi:10.1371/journal.pone.0116896

    Article  PubMed  PubMed Central  Google Scholar 

  • Pidot SJ, Coyne S, Kloss F, Hertweck C (2014) Antibiotics from neglected bacterial sources. Int J Med Microbiol 304:14–22. doi:10.1016/j.ijmm.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  • Puopolo G, Cimmino A, Palmieri MC, Giovannini O, Evidente A, Pertot I (2014) Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. J Appl Microbiol 117:1168–1180. doi:10.1111/jam.12611

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach H (2006) The genus Lysobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp. 939–957

    Chapter  Google Scholar 

  • Renelli M, Matias V, Lo RY, Beveridge TJ (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150:2161–2169. doi:10.1099/mic.0.26841-0

    Article  CAS  PubMed  Google Scholar 

  • Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S (2015) A basis for vaccine development: comparative characterization of Haemophilus influenzae outer membrane vesicles. Int J Med Microbiol 305:298–309. doi:10.1016/j.ijmm.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  • Rompikuntal PK, Thay B, Khan MK, Alanko J, Penttinen AM, Asikainen S, Wai SN, Oscarsson J (2012) Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun 80:31–42. doi:10.1128/IAI.06069-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabra W, Lünsdorf H, Zeng AP (2003) Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149:2789–2795. doi:10.1099/mic.0.26443-0

    Article  CAS  PubMed  Google Scholar 

  • Schertzer JW, Whiteley M (2012) A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio 3:e00297–e00211. doi:10.1128/mBio.00297-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13:605–619. doi:10.1038/nrmicro3525

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Sullivan CJ, Kuehn MJ (2013) Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochemistry 52:3031–3040. doi:10.1021/bi400164t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C, Kulp A, Kuehn MJ (2014) Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiol 14:324. doi:10.1186/s12866-014-0324-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Shishkova NA, Kudryakova IV, Suzina NE, Tsfasman IM, Vasilyeva NV (2013) The therapeutic and preventive effect of outer membrane vesicles of Lysobacter sp. XL1 containing bacteriolytic enzyme L5. In: Kolomiets EI (ed) Microbial biotechnology: fundamental and applied aspects, T5. Belarusian Science, Minsk (in Russian), pp 538–547

  • Silen JL, Frank D, Fujishige A, Bone R, Agard DA (1989) Analysis of prepro-α-lytic protease expression in Escherichia coli reveals that the pro region is required for activity. J Bacteriol 171:1320–1325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stepnaya OA, Begunova EA, Tsfasman IM, Kulaev IS (1996) Bacteriolytic enzyme preparation of lysoamidase. Purification and some properties of bacteriolytic peptidase L1. Biokhimiya (in Russian) 61:656–663

    CAS  Google Scholar 

  • Stepnaya OA, Tsfasman IM, Logvina IA, Ryazanova LP, Muranova TA, Kulaev IS (2005) Isolation and characterization of a new extracellular bacteriolytic endopeptidase of Lysobacter sp. XL1. Biochemistry (Mosc) 70:1031–1037. doi:10.1007/s10541-005-0221-1

    Article  CAS  Google Scholar 

  • Tashiro Y, Sakai R, Toyofuku M, Sawada I, Nakajima-Kambe T, Uchiyama H, Nomura N (2009) Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in Pseudomonas aeruginosa. J Bacteriol 191:7509–7519. doi:10.1128/JB.00722-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro Y, Inagaki A, Shimizu M, Ichikawa S, Takaya N, Nakajima-Kambe T, Uchiyama H, Nomura N (2011) Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa. Biosci Biotechnol Biochem 75:605–607. doi:10.1271/bbb.100754

    Article  CAS  PubMed  Google Scholar 

  • Tashiro Y, Uchiyama H, Nomura N (2012) Multifunctional membrane vesicles in Pseudomonas aeruginosa. Environ Microbiol 14:1349–1362. doi:10.1111/j.1462-2920.2011.02632.x

    Article  CAS  PubMed  Google Scholar 

  • Vasilyeva NV, Tsfasman IM, Suzina NE, Stepnaya OA, Kulaev IS (2008) Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles. FEBS J 275:3827–3835. doi:10.1111/j.1742-4658.2008.06530.x

    Article  CAS  PubMed  Google Scholar 

  • Vasilyeva NV, Tsfasman IM, Suzina NE, Stepnaya OA, Kulaev IS (2009) Outer membrane vesicles of Lysobacter sp. Dokl Biochem Biophys 426:139–142. doi:10.1134/S1607672909030041

    Article  CAS  PubMed  Google Scholar 

  • Vasilyeva NV, Tsfasman IM, Kudryakova IV, Suzina NE, Shishkova NA, Kulaev IS, Stepnaya OA (2013) The role of membrane vesicles in secretion of Lysobacter sp. bacteriolytic enzymes. J Mol Microbiol Biotechnol 23:142–151. doi:10.1159/000346550

    Article  CAS  PubMed  Google Scholar 

  • Vasilyeva NV, Shishkova NA, Marinin LI, Ledova LA, Tsfasman IM, Muranova TA, Stepnaya OA, Kulaev IS (2014) Lytic peptidase L5 of Lysobacter sp. XL1 with broad antimicrobial spectrum. J Mol Microbiol Biotechnol 24:59–66. doi:10.1159/000356838

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Chanda W, Zhong M (2015) The relationship between biofilm and outer membrane vesicles: a novel therapy overview. FEMS Microbiol Lett 362:fnv117. doi:10.1093/femsle/fnv117

    Article  PubMed  Google Scholar 

  • Wensink J, Witholt B (1981) Outer membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur J Biochem 116:331–335. doi:10.1111/j.1432-1033.1981.tb05338.x

    Article  CAS  PubMed  Google Scholar 

  • Xie H (2015) Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles. Future Microbiol 10:1517–1527. doi:10.2217/fmb.15.63

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Wright S, Shen Y, Du L (2012) Bioactive natural products from Lysobacter. Nat Prod Rep 29:1277–1287. doi:10.1039/c2np20064c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaron S, Kolling GL, Simon L, Matthews KR (2000) Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microbiol 66:4414–4420. doi:10.1128/AEM.66.10.4414-4420.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin S, Rao G, Wang J, Luo L, He G, Wang C, Ma C, Luo X, Hou Z, Xu G (2015) Roemerine improves the survival rate of septicemic BALB/c mice by increasing the cell membrane permeability of Staphylococcus aureus. PLoS One 10:e0143863. doi:10.1371/journal.pone.0143863

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Srisatjaluk R, Justus DE, Doyle RJ (1998) On the origin of membrane vesicles in gram-negative bacteria. FEMS Microbiol Lett 163:223–228. doi:10.1111/j.1574-6968.1998.tb13049.x

    Article  CAS  PubMed  Google Scholar 

  • Zielke RA, Wierzbicki IH, Weber JV, Gafken PR, Sikora AE (2014) Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets. Mol Cell Proteomics 13:1299–1317. doi:10.1074/mcp.M113.029538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Victor Selivanov for English translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia V. Vasilyeva.

Ethics declarations

All applicable institutional guidelines for the care and use of animals were followed. Experiments with animals were approved by the bioethics commission of the State Research Center for Applied Microbiology and Biotechnology. Works with animals were conducted in accordance with Russian Federation legislation and the Directive of the European Parliament and the Council of the European Union on Protection of Animals used for Scientific Purposes.

Conflict of interest

The authors declare that they have no competing interests.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, RFMEFI60714X0013 (Agreement No. 14.607.21.0013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryakova, I.V., Shishkova, N.A. & Vasilyeva, N.V. Outer membrane vesicles of Lysobacter sp. XL1: biogenesis, functions, and applied prospects. Appl Microbiol Biotechnol 100, 4791–4801 (2016). https://doi.org/10.1007/s00253-016-7524-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7524-6

Keywords

Navigation