Skip to main content
Log in

Reversible S-nitrosylation limits over synthesis of fungal styrylpyrone upon nitric oxide burst

  • Original Article
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is known to be involved in modulating production of styrylpyrone polyphenols in the basidiomycete Inonotus obliquus. However, it remains unknown how NO orchestrates fungal styrylpyrone biosynthesis. Here, we show that a transient NO burst correlated with an enhanced expression of phenylalanine ammonia lyase (PAL), 4-coumarate CoA ligase (4CL), and styrylpyrone synthase (SPS), the key enzymes involved in styrylpyrone biosynthesis, and subsequently an increased production of styrylpyrone polyphenols. In parallel, the NO burst also resulted in S-nitrosylation of PAL, 4CL, and SPS, which compromised their enzymatic activities mediating a post-translational feedback mechanism that keeps NO-dependent transcriptional activation in check. Moreover, dysfunction of thioredoxin reductase (TrxR) further increased the formation of S-nitrosylated proteins, implicating the significance of the Trx system in maintaining a low level of protein-nitrosothiols. Three thioredoxin-like proteins (TrxLs) from I. obliquus show in vitro denitrosylation potential toward S-nitrosylated proteins via trans-denitrosylation or mixed disulfide intermediates. Thus, S-nitrosylation triggered by the NO burst limits over production of fungal styrylpyrone polyphenols, and denitrosylation by TrxLs that act in concert with TrxR play a key role in maintaining redox balance and orchestrating catalytic activities of the enzymes engaged in styrylpyrone synthetic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beckert C, Horn C, Schnitzler JP, Lehning A, Hellert W, Veit M (1997) Styrylpyrone biosynthesis in Equisetum arvense. Phytochem 44:275–283

    Article  CAS  Google Scholar 

  • Benhar M (2015) Nitric oxide and thioredoxin system: a complex interplay in redox regulation. Biochim Biophys Acta 1850:2476–2484

    Article  CAS  PubMed  Google Scholar 

  • Benhar M, Forrester M, Hess D, Stamler J (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Sci 320:1050–1054

    Article  CAS  Google Scholar 

  • Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Mol Cell Biol 10:721–733

    CAS  Google Scholar 

  • Ben-Lulu S, Ziv T, Admon A, Weisman-Shomer P, Benhar M (2014) A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation. Mol Cell Proteom 13(10):2573–2583

    Article  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogen. Sci 324:742–744

    Article  CAS  Google Scholar 

  • Campos R, Nonogaki H, Suslow T, Saltveit ME (2004) Isolation and characterization of a wound inducible phenylalanine ammonia-lyase gene (LsPAL1) from Romaine lettuce leaves. Physiol Plant 121:429–438

    Article  CAS  Google Scholar 

  • Chen YJ, Ching WC, Lin YP, Chen YJ (2013) Methods for detection and characterization of protein S-nitrosylation. Methods 62:138–150

    Article  CAS  PubMed  Google Scholar 

  • Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family kinetic characterization of the four isoforms. Phytochem 65:1557–1564

    Article  CAS  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessiq DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book e0156. American Society of Plant Biologists, Washington DC. doi:10.1199/tab.0156

  • Forrester MT, Thompson JW, Foster MW, Leonardo N, Moseley MA, Stamler JS (2009) Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol 27:557–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossi L, Montevecchi PC (2002) S-nitrosocysteine and cysteine from reaction of cysteine with nitrous acid. A Kinetic Investigation. J Org Chem 67:8625–8630

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Derakhshan B, Shi L, Campagne F, Gross SS (2006) SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. PNAS 103:1012–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshal HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–156

    Article  CAS  PubMed  Google Scholar 

  • Huang HY, Chieh SY, Tso TK, Chien Y, Lin HT, Tsai YC (2011) Orally administered mycelial culture of Phellinus linteus exhibits antitumor effects in hepatoma cell-bearing mice. J Ethnopharmacol 133:460–466

    Article  PubMed  Google Scholar 

  • Keller NP (2015) Translating biosynthetic gene cluster into fungal armor and weaponry. Nat Chem Biol 11:671–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kneeshaw S, Gelineau SR, Tada Y, Loake GJ, Spoel SH (2014) Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol Cell 56:153–162

    Article  CAS  PubMed  Google Scholar 

  • Kronenfeld G, Engelman R, Weisman-Shomer P, Atlas D, Benhar M (2014) Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents. Free Rad Biol Med 79:138–146

    Article  PubMed  Google Scholar 

  • Lee D, Meye K, Chapple C, Douglasa CJ (1997) Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition. Plant Cell 9:1985–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I, Yun B (2008) Peroxidase-mediated formation of the fungal polyphenols 3,14-bishispidinyl. J Microbiol Biotechnol 18:107–109

    CAS  PubMed  Google Scholar 

  • Lee IK, Yun BS (2011) Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotus spp, and their medicinal importance. J Antibiot 64:349–359

    Article  CAS  PubMed  Google Scholar 

  • Lewin A, Mayer M, Chusainow J, Jacob D, Appel B (2005) Viral promoters can initiate expression of toxin genes introduced into Escherichia coli. BMC Biotechnol 5:19–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ (2011) GSNOR-mediated denitrosylation in the plant defence response. Plant Sci 181:540–544

    Article  CAS  PubMed  Google Scholar 

  • Marinez-Ruiz A, Cadenas S, Lamas S (2011) Nitric oxide signaling: classical, less classical and nonclassical mechanisms. Free Rad Biol Medi 51:17–29

    Article  Google Scholar 

  • Nallamsetty S, Waugh DS (2007) A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat Protocol 2:383–391

    Article  CAS  Google Scholar 

  • Nikitovic D, Holmgren A (1996) S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 271:19180–19185

    Article  CAS  PubMed  Google Scholar 

  • Raju K, Doulias PT, Tenopoulou M, Greene JL, Ischiropoulos H (2012) Strategies and tools to explore protein S-nitrosylation. Biochim Biophys Acta 1820:684–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skelly M, Loake G (2013) Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance. Antioxid Redox Signal 19:990–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JW, Forrester MT, Moseley MA, Foster MW (2013) Solid-phase capture for the detection and relative quantification of S-nitrosoproteins by mass spectrometry. Methods 62:130–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Nishiya T (2011) Screening systems for the identification of S-nitrosylated proteins. Nitric Oxide 25:108–111

    Article  CAS  PubMed  Google Scholar 

  • Vitor S, Durate G, Saviani E, Vincentz M, HO HC, Salgado I (2013) Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syingae. Planta 238:475–486

    Article  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Parrott AM, Liu T, Jain MR, Yang Y, Sadoshima J, Li H (2011) Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach. J Proteom 74:2498–2509

    Article  CAS  Google Scholar 

  • Xin D, Zou X, Zou M, Liu C (2014) The expression and antibody preparation of S 100 A protein. Chin J Cell Mol Immunol 30:1166–1169

    CAS  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Yun BW, Spoel SH, Loake GJ (2012) A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation. Curr Opin Plant Biol 15:424–430

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Miao K, Zhang M, Wei Z, Zheng W (2009) Effects of nitric oxide on production of antioxidant phenolic compounds in Phaeoporus obliquus. Mycosystema 28:750–754

    CAS  Google Scholar 

  • Zhao Y, Xi Q, Xu Q, He M, Ding J, Dai Y, Keller NP, Zheng W (2015) Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in Inonotus obliquus cocultured with Phellinus morii. Appl Microbiol Biotechnol 99:4361–4372

    Article  CAS  PubMed  Google Scholar 

  • Zheng NC, Huang BM, Xu J, Huang SS, Hu XC, Chen JZ, Yu XG (2006) Effect of amino acid site mutagenesis on the activity and heat stability of Clonorchis sinensis malate dehydrogenase. Chin J Zoon 22:575–579

    CAS  Google Scholar 

  • Zheng W, Liu Y, Pan S, Yuan W, Dai Y, Wei J (2011a) Involvements of S-nitrosylation and denitrosylation in the production of polyphenols by Inonotus obliquus. Appl Microbiol Biotechnol 90:1763–1772

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Miao K, Liu Y, Zhao Y, Zhang M, Pan S, Dai Y (2010) Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl Microbiol Biotechnol 87:1237–1254

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Miao K, Zhao Y, Pan S, Zhang M, Jiang H (2009) Nitric oxide mediates the fungal-elicitor enhanced biosynthesis of antioxidant polyphenols in submerged cultures of Inonotus obliquus. Microbiol 155:3340–3348

    Article  Google Scholar 

  • Zheng W, Zhao Y, Zheng X, Liu Y, Pan S, Dai Y, Liu F (2011b) Production of antioxidant and antitumor metabolites by submerged cultures of Inonotus obliquus cocultured with Phellinus punctatus. Appl Microbiol Biotechnol 89:157–167

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Liu K (2010) Pigments of fungi (macromycetes). Nat Prod Rep 27:1531–1570

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the grants from the Natural Science Foundation of China (31170063, 31470173) for Dr. Weifa Zheng. The authors thank Dr. Yiqin Wang from Institute of Genetics and Developmental Biology, Chinese Academy of Sciences for her help in gene cloning and protein expression. The authors also appreciate Dr. Wenbing Yin from Institute of Microbiology, Chinese Academy of Sciences, for his advice in genome annotation of I. obliquus.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nancy P Keller or Weifa Zheng.

Ethics declarations

This study deals with the culture of two medicinal fungi I. obliquus and P. morii, gene cloning, and expression of the proteins from I. obliquus. Considering the sarcrifice of rabbits in antibody preparation, the recombinant antigens were commissioned to Animal Centre of Genetics and Developmental Biology, Chinease Academy of Sciences, where the Physical Containment Level 2 was applied for rabbit raising and immunity. None of the other conducts involved in this study are condidered to be “vulnerable,” and there is no indication that the research processes will result in any harm or dicomfort except the cost of rabbit.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Yanxia Zhao and Meihong He contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 1697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., He, M., Xi, Q. et al. Reversible S-nitrosylation limits over synthesis of fungal styrylpyrone upon nitric oxide burst. Appl Microbiol Biotechnol 100, 4123–4134 (2016). https://doi.org/10.1007/s00253-016-7442-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7442-7

Keywords

Navigation