Skip to main content

Advertisement

Log in

Construction of an environmental safe Bacillus thuringiensis engineered strain against Coleoptera

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cloning of new toxic genes from Bacillus thuringiensis (Bt) and construction of Bt engineered strains are two key strategies for bio-control of coleopteran pests in agriculture and forestry. In this study, we cloned a new cry3Aa-type gene, cry3Aa8, from wild Bt strain YC-03 against coleopteran, and constructed a Bt engineered strain, ACE-38, containing insecticidal protein-encoding gene cry3Aa8. The engineered strain, with almost four times of Cry3Aa yield compared with strain YC-03, was an antibiotic marker-free strain. Though no selective pressure was presented in the medium, cry3Aa8 in the engineered strain ACE-38 remained stable. The yield of Cry3Aa by strain ACE-38 reached 2.09 mg/ml in the optimized fermentation medium. The activity of strain ACE-38 against Plagiodera versicolora was tested, and the LC50 of ACE-38 cultures in the optimized fermentation medium was 1.13 μl/ml. Strain ACE-38 is a non-antibiotic Bt engineered strain with high Chrysomelidae toxicity and exhibits good fermentation property. The modified indigenous site-specific recombination system constructed in this study might be useful for the construction of Bt engineered strains containing genes that cannot be expressed in the indigenous site-specific recombination system using plasmid pBMB1205R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agaisse H, Lereclus D (1996) STAB-SD: a Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol Microbiol 20(3):633–643

    Article  CAS  PubMed  Google Scholar 

  • Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108(1):115–119

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short protocols in molecular biology, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Baum JA, Coyle DM, Gilbert MP, Jany CS, Gawron-Burke C (1990) Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol 56(11):3420–3428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baum JA, Kakefuda M, Gawron-Burke C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol 62(12):4367–4373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard P, Grebennikov VV, Smith AB, Douglas H (2009) Biodiversity of Coleoptera. Insect Biodiversity: Science and Society:265–301

  • Brantl S, Behnke D (1992a) The amount of RepR protein determines the copy number of plasmid pIP501 in Bacillus subtilis. J Bacteriol 174(16):5475–5478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brantl S, Behnke D (1992b) Copy number control of the streptococcal plasmid pIP501 occurs at three levels. Nucleic Acids Res 20(3):395–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas R (1998) Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62(2):434–464

    PubMed  PubMed Central  Google Scholar 

  • Frankenhuyzen KV (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101(1):1–16

    Article  PubMed  Google Scholar 

  • Gao M, Li R, Dai S, Li X, Fu J (1999) New coleopterancidai strains of Bacillus thuringiensis and production of coleopterancide. Wei Sheng Wu Xue Bao 39(6):515

    CAS  PubMed  Google Scholar 

  • Gao M, Li R, Dai S, Wu Y, Yi D (2008) Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biol Control 44(3):380–388

    Article  CAS  Google Scholar 

  • He Y, Lv L, Kuang Z, Feng X, Chen H, Wu Y (2005) Effect of temperature and humidity on the virulence of beetle-derived Beauveria bassiana (Balsamo) Vuillemin (Deuteromycetes: Moniliales) against the daikon leaf beetle Phaedon brassicae Baly (Coleoptera: Chrysomelidae). Kun Chong Xue Bao 48(5):679–686

    Google Scholar 

  • He J, Shao X, Zheng H, Li M, Wang J, Zhang Q, Li L, Liu Z, Sun M, Wang S (2010) Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J Bacteriol 192(15):4074–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hug K (2008) Genetically modified organisms: do the benefits outweigh the risks? Medicina (Kaunas) 44(2):87–99

    Google Scholar 

  • Lambert B, Peferoen M (1992) Insecticidal promise of Bacillus thuringiensis. BioScience:112–122

  • Lereclus D, Vallade M, Chaufaux J, Arantes O, Rambaud S (1992) Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Nat Biotechnol 10(4):418–421

    Article  CAS  Google Scholar 

  • Liu J, Yan G, Shu C, Zhao C, Liu C, Song F, Zhou L, Ma J, Zhang J, Huang D (2010) Construction of a Bacillus thuringiensis engineered strain with high toxicity and broad pesticidal spectrum against coleopteran insects. Appl Microbiol Biotechnol 87(1):243–249

    Article  PubMed  Google Scholar 

  • Liu N, Li Y, Zhang R (2012) Invasion of Colorado potato beetle, Leptinotarsa decemlineata, in China: dispersal, occurrence, and economic impact. Entomol Exp Appl 143(3):207–217

    Article  Google Scholar 

  • Nazarian A, Jahangiri R, Jouzani GS, Seifinejad A, Soheilivand S, Bagheri O, Keshavarzi M, Alamisaeid K (2009) Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. J Invertebr Pathol 102(2):101–109

    Article  CAS  PubMed  Google Scholar 

  • Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17(4):547

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 2. Cold spring harbor laboratory press, New York

    Google Scholar 

  • Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1996) Construction of new insecticidal Bacillus thuringiensis recombinant strains by using the sporulation non-dependent expression system of cryIIIA and a site specific recombination vector. J Biotechnol 48(1–2):81–96

    Article  CAS  PubMed  Google Scholar 

  • Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1997) A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microbiol 63(2):779–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchis V, Gohar M, Chaufaux J, Arantes O, Meier A, Agaisse H, Cayley J, Lereclus D (1999) Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance. Appl Environ Microbiol 65(9):4032–4039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D, Dean D (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shu C, Liu R, Wang R, Zhang J, Feng S, Huang D, Song F (2007) Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae. Curr Microbiol 55(6):492–496

    Article  CAS  PubMed  Google Scholar 

  • Shu C, Yan G, Wang R, Zhang J, Feng S, Huang D, Song F (2009a) Characterization of a novel cry8 gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. Appl Microbiol Biotechnol 84(4):701–707

    Article  CAS  PubMed  Google Scholar 

  • Shu C, Yu H, Wang R, Fen S, Su X, Huang D, Zhang J, Song F (2009b) Characterization of two novel cry8 genes from Bacillus thuringiensis strain BT185. Curr Microbiol 58(4):389–392

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang J, Song F, Wu J, Feng S, Huang D (2006) Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests. Appl Microbiol Biotechnol 72(5):924–930

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang J, Song F, Gu A, Uwais A, Shao T, Huang D (2008) Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field. J Appl Microbiol 105(5):1536–1543

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Sun M, Yu Z (2000) A new resolution vector with cry1Ac10 gene based on Bacillus thuringiensis transposon Tn4430. Wei Sheng Wu Xue Bao 40(3):264–269

    CAS  PubMed  Google Scholar 

  • Wu L, Sun M, Zhu C, Zhang L, Yu Z (2002) A novel resolution vector with Bacillus thuringiensis plasmid replicon ori44. Sheng Wu Gong Cheng Xue Bao 18(3):335–338

    PubMed  Google Scholar 

  • Zhang J, Song F, Li C, Sun Z, Tan J, Huang D (2002) Cloning and expression of cry3Aa7 gene from Bacillus thuringiensis strain toxic to Coleopteran pests. Zhongguo Nongye Kexue 35(6):650–653

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledged Dr. Sun Ming at Huazhong Agricultural University in China for providing vectors pHT304, pBMB1205R, pBMB1200 and Bacillus thuringiensis acrystalliferous mutant strain BMB171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiying Gao.

Ethics declarations

Funding

This study was funded by the National Nature Science Foundation of China (No. 31170123) and the project of Chinese Academy of Sciences (KSZD-EW-Z-021-2-2).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Yuan, Y. & Gao, M. Construction of an environmental safe Bacillus thuringiensis engineered strain against Coleoptera . Appl Microbiol Biotechnol 100, 4027–4034 (2016). https://doi.org/10.1007/s00253-015-7250-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7250-5

Keywords

Navigation