Skip to main content
Log in

Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The consumption of fiber-rich foods such as cereal bran is highly recommended due to its beneficial health effects. Pre-fermentation of bran with lactic acid bacteria can be used to improve the otherwise impaired flavor and textural qualities of bran-rich products. These positive effects are attributed to enzymatic modification of bran components and the production of functional metabolites like organic acids and exopolysaccharides such as dextrans. The aim of this study was to investigate dextran production in wheat and rye bran by fermentation with two Weissella confusa strains. Bran raw materials were analyzed for their chemical compositions and mineral content. Microbial growth and acidification kinetics were determined from the fermentations. Both strains produced more dextran in rye bran in which the fermentation-induced acidification was slower and the acidification lag phase longer than in wheat bran. Higher dextran production in rye bran is expected to be due to the longer period of optimal pH for dextran synthesis during fermentation. The starch content of wheat bran was higher, which may promote isomaltooligosaccharide formation at the expense of dextran production. W. confusa Cab3 produced slightly higher amounts of dextran than W. confusa VTT E-90392 in all raw materials. Fermentation with W. confusa Cab3 also resulted in lower residual fructose content which has technological relevance. The results indicate that wheat and particularly rye bran are promising matrices for producing technologically significant amounts of dextran, which facilitates the use of nutritionally valuable raw bran in food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amari M, Arango L, Gabriel V, Robert H, Morel S, Moulis C, Gabriel B, Remaud-Siméon M, Fontagné-Faucher C (2013) Characterization of a novel dextransucrase from Weissella confusa isolated from sourdough. Appl Microbiol Biotechnol 97:5413–5422

    Article  CAS  PubMed  Google Scholar 

  • Arendt EK, Ryan LAM, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174

    Article  CAS  PubMed  Google Scholar 

  • Armero E, Collar C (1998) Crumb firming kinetics of wheat breads with anti-staling additives. J Cereal Sci 28:165–174

    Article  CAS  Google Scholar 

  • Bakke A, Vickers Z (2007) Consumer liking of refined and whole wheat breads. J Food Sci 72:S473–S480

    Article  CAS  PubMed  Google Scholar 

  • Cleemput G, Hessing M, Van Oort M, Deconynck M, Delcour JA (1997) Purification and characterization of a [beta]-D-xylosidase and an endo-xylanase from wheat flour. Plant Physiol 113:377–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coda R, Rizzello CG, Katina K (2015) Bran bioprocessing for enhanced functional properties. Curr Opin Food Sci 1:50–55

    Article  Google Scholar 

  • Di Cagno R, De Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A, Gaenzle M, Ciati R, Gobbetti M (2006) Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J Agric Food Chem 54:9873–9881

    Article  PubMed  Google Scholar 

  • Fusco V, Quero GM, Cho GS, Kabisch J, Meske D, Neve H, Bockelmann W, Franz CM (2015) The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 6:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Galle S, Arendt EK (2014) Exopolysaccharides from sourdough lactic acid bacteria. Crit Rev Food Sci Nutr 54:891–901

    Article  CAS  PubMed  Google Scholar 

  • Galle S, Schwab C, Arendt E, Gänzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58:5834–5841

    Article  CAS  PubMed  Google Scholar 

  • Gänzle MG (2014) Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol 37:2–10

    Article  PubMed  Google Scholar 

  • Gys W, Gebruers K, Sørensen J, Courtin C, Delcour J (2004) Debranning of wheat prior to milling reduces xylanase but not xylanase inhibitor activities in wholemeal and flour. J Cereal Sci 39:363–369

    Article  CAS  Google Scholar 

  • Hansen HB, Andreasen M, Nielsen M, Larsen L, Knudsen BK, Meyer A, Christensen L, Hansen Å (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur Food Res Technol 214:33–42

    Article  CAS  Google Scholar 

  • Juvonen R, Honkapää K, Maina NH, Shi Q, Viljanen K, Maaheimo H, Virkki L, Tenkanen M, Lantto R (2015) The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.). Int J Food Microbiol 207:109–118

    Article  CAS  PubMed  Google Scholar 

  • Kaditzky S, Vogel RF (2008) Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Technol 228:291–299

    Article  CAS  Google Scholar 

  • Kaditzky SB, Behr J, Stocker A, Kaden P, Gänzle MG, Vogel RF (2008) Influence of pH on the formation of glucan by Lactobacillus reuteri TMW 1.106 exerting a protective function against extreme pH values. Food Biotechnol 22:398–418

    Article  CAS  Google Scholar 

  • Kajala I, Shi Q, Nyyssola A, Maina NH, Hou Y, Katina K, Tenkanen M, Juvonen R (2015) Cloning and characterization of a Weissella confusa dextransucrase and its application in high fibre baking. PLoS One. doi:10.1371/journal.pone.0116418

    PubMed  PubMed Central  Google Scholar 

  • Kamal-Eldin A, Laerke HN, Knudsen KE, Lampi AM, Piironen V, Adlercreutz H, Katina K, Poutanen K, Man P (2009) Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food Nutr Res 53:8349–8356

    Article  Google Scholar 

  • Katina K, Maina NH, Juvonen R, Flander L, Johansson L, Virkki L, Tenkanen M, Laitila A (2009) In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26:734–743

    Article  CAS  PubMed  Google Scholar 

  • Katina K, Juvonen R, Laitila A, Flander L, Nordlund E, Kariluoto S, Piironen V, Poutanen K (2012) Fermented wheat bran as a functional ingredient in baking. Cereal Chem 89:126–134

    Article  CAS  Google Scholar 

  • Korakli M, Vogel RF (2006) Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Appl Microbiol Biotechnol 71:790–803

    Article  CAS  PubMed  Google Scholar 

  • Laurikainen T, Härkönen H, Autio K, Poutanen K (1998) Effects of enzymes in fibre‐enriched baking. J Sci Food Agric 76:239–249

    Article  CAS  Google Scholar 

  • Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L (2013) Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163:250–272

    Article  CAS  PubMed  Google Scholar 

  • Lioger D, Leenhardt F, Demigne C, Remesy C (2007) Sourdough fermentation of wheat fractions rich in fibres before their use in processed food. J Sci Food Agric 87:1368–1373

    Article  CAS  Google Scholar 

  • Miller AW, Robyt JF (1986) Activation and inhibition of dextransucrase by calcium. Biochim Biophys Acta 880:32–39

    Article  CAS  PubMed  Google Scholar 

  • Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot R, Remaud-Siméon M (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675–685

    Article  CAS  Google Scholar 

  • Monsan P, Remaud-Siméon M, André I (2010) Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Curr Opin Microbiol 13:293–300

    Article  CAS  PubMed  Google Scholar 

  • Nordlund E, Aura A, Mattila I, Kössö T, Rouau X, Poutanen K (2012) Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J Agric Food Chem 60:8134–8145

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Kothari D, Shukla R, Das D, Goyal A (2011) Scale up of dextran production from a mutant of Pediococcus pentosaceus (SPAm) using optimized medium in a bioreactor. Braz Arch Biol Technol 54:1125–1134

    Article  CAS  Google Scholar 

  • Patel A, Falck P, Shah N, Immerzeel P, Adlercreutz P, Stålbrand H, Prajapati JB, Holst O, Karlsson EN (2013) Evidence for xylooligosaccharide utilization in Weissella strains isolated from Indian fermented foods and vegetables. FEMS Microbiol Lett 346:20–28

    Article  CAS  PubMed  Google Scholar 

  • Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26:693–699

    Article  CAS  PubMed  Google Scholar 

  • Prinsen P, Gutiérrez A, Faulds CB, del Río JC (2014) Comprehensive study of valuable lipophilic phytochemicals in wheat bran. J Agric Food Chem 62:1664–1673

    Article  CAS  PubMed  Google Scholar 

  • Reisinger M, Tirpanalan Ö, Huber F, Kneifel W, Novalin S (2014) Investigations on a wheat bran biorefinery involving organosolv fractionation and enzymatic treatment. Bioresour Technol 170:53–61

    Article  CAS  PubMed  Google Scholar 

  • Rosell CM, Santos E, Collar C (2006) Mixing properties of fibre-enriched wheat bread doughs: a response surface methodology study. Eur Food Res Technol 223:333–340

    Article  CAS  Google Scholar 

  • Rühmkorf C, Jungkunz S, Wagner M, Vogel RF (2012) Optimization of homoexopolysaccharide formation by lactobacilli in gluten-free sourdoughs. Food Microbiol 32:286–294

    Article  PubMed  Google Scholar 

  • Rühmkorf C, Bork C, Mischnick P, Rübsam H, Becker T, Vogel RF (2013) Identification of Lactobacillus curvatus TMW 1.624 dextransucrase and comparative characterization with Lactobacillus reuteri TMW 1.106 and Lactobacillus animalis TMW 1.971 dextransucrases. Food Microbiol 34:52–61

    Article  PubMed  Google Scholar 

  • Shukla S, Goyal A (2011) Optimization of fermentation medium for enhanced glucansucrase and glucan production from Weissella confusa. Braz Arch Biol Technol 54:1117–1124

    CAS  Google Scholar 

  • Shukla R, Goyal A (2012) Optimization and scale-up of fermentation of glucansucrase and branched glucan by Pediococcus pentosaceus CRAG3 using Taguchi methodology in bioreactor. J Biosci Biotechnol 1:73–82

    Google Scholar 

  • Shukla S, Shi Q, Maina NH, Juvonen M, Tenkanen M, Goyal A (2014) Weissella confusa Cab3 dextransucrase: properties and in vitro synthesis of dextran and glucooligosaccharides. Carbohydr Polym 101:554–564

    Article  CAS  PubMed  Google Scholar 

  • Swennen K, Courtin CM, Lindemans GC, Delcour JA (2006) Large‐scale production and characterisation of wheat bran arabinoxylooligosaccharides. J Sci Food Agric 86:1722–1731

    Article  CAS  Google Scholar 

  • Tieking M, Ehrmann MA, Vogel RF, Gänzle MG (2005) Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl Microbiol Biotechnol 66:655–663

    Article  CAS  PubMed  Google Scholar 

  • Wolter A, Hager A, Zannini E, Galle S, Gänzle M, Waters D, Arendt E (2014) Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiol 37:44–50

    Article  CAS  PubMed  Google Scholar 

  • Zand N, Chowdhry BZ, Zotor FB, Wray DS, Amuna P, Pullen FS (2011) Essential and trace elements content of commercial infant foods in the UK. Food Chem 128:123–128

    Article  CAS  PubMed  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, van ’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Academy of Finland (contract number 255755) and the Department of Biotechnology, Ministry of Science and Technology, New Delhi, India, to AG via the joint WISEDextran project, and the ABS Graduate School (QS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkka Kajala.

Ethics declarations

Conflict of interest

This study was funded by a grant from Academy of Finland (contract number 255755) and by ABS graduate school (QS). All co-authors have consented to submitting this manuscript. The authors state that they have no conflict of interest.

Additional information

Ilkka Kajala and Jari Mäkelä contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajala, I., Mäkelä, J., Coda, R. et al. Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Appl Microbiol Biotechnol 100, 3499–3510 (2016). https://doi.org/10.1007/s00253-015-7189-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7189-6

Keywords

Navigation