Skip to main content
Log in

The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Light is an essential factor for pigment formation and fruit body development in Cordyceps militaris, a well-known edible and medicinal fungus. Cmwc-1, a homolog of the blue-light receptor gene white collar-1 (wc-1) in Neurospora crassa, was cloned from the C. militaris genome in our previous study. Here, Cmwc-1 gene inactivation results in thicker aerial hyphae, disordered fruit body development, a significant reduction in conidial formation, and carotenoid and cordycepin production. These characteristics were restored when the ΔCmwc-1 strains were hybridized with wild-type strains of the opposite mating type. A genome-wide expression analysis revealed that there were 1042 light-responsive genes in the wild-type strain and only 458 in the ΔCmwc-1 strain. Among five putative photoreceptors identified, Vivid, cryptochrome-1, and cyclobutane pyrimidine dimer photolyase are strongly induced by light in a Cmwc-1-dependent manner, while phytochrome and cryptochrome-2 were not induced. The transcription factors involved in the fungal light reaction were mainly of the Zn2Cys6 type. CmWC-1 regulates adenylosuccinate synthase, an important enzyme for adenosine de novo synthesis, which could explain the reduction in cordycepin production. Some G protein-coupled receptors that control fungal fruit body formation and the sexual cycle were regulated by CmWC-1, and the cAMP pathway involved in light signal transduction in N. crassa was not critical for the photoreaction in the fungus here. A transcriptional analysis indicated that steroid biosynthesis was more active in the ΔCmwc-1 strain, suggesting that CmWC-1 might switch the vegetative growth state to primordia differentiation by suppressing the expression of related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinform 31(2):166–169

    Article  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH (2008) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 19(8):3254–3262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belozerskaya TA, Gessler NN, Isakova EP, Deryabina YI (2012) Neurospora crassa light signal transduction is affected by ROS. J Signal Transduct 2012:791963, http://dx.doi.org/10.1155/2012/791963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57(1):289–300

    Google Scholar 

  • Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar complex. PLoS ONE 8(12):e84223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casas-Flores S, Rios-Momberg M, Rosales-Saavedra T, Martínez-Hernández P, Olmedo-Monfil V, Herrera-Estrella A (2006) Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5(3):499–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C, Bao HY, Bau T (2013) Chemical composition analysis of cultured Cordyceps militaris. Food Sci 34(11):36–40

    Google Scholar 

  • Chen CH, Dunlap JC, Loros JJ (2010) Neurospora illuminates fungal photoreception. Fungal Genet Biol 47:922–929

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng P, He QY, Yang YH, Wang LX, Liu Y (2003) Functional conservation of light, oxygen, or voltage domains in light sensing. Proc Natl Acad Sci USA 100:5938–5943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corrochano LM (2007) Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 6:725–736

    Article  PubMed  CAS  Google Scholar 

  • Dong CH, Yao YJ (2010) Comparison of some metabolites among cultured mycelia of Ophiocordyceps sinensis from different geographical regions. Int J Med Mushrooms 12:287–297

    Article  CAS  Google Scholar 

  • Dong JZ, Liu MR, Lei C, Zheng XJ, Wang Y (2012) Effects of selenium and light wavelengths on liquid culture of Cordyceps militaris Link. Appl Biochem Biotechnol 166(8):2030–2036

    Article  PubMed  CAS  Google Scholar 

  • Dong JZ, Wang SH, Ai XR, Yao L, Sun ZW, Lei C, Wang Y, Wang Q (2013) Composition and characterization of cordyxanthins from Cordyceps militaris fruiting bodies. J Func Foods 5(3):1450–1455

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dunlap JC (2006) Proteins in the Neurospora circadian clockworks. J Biol Chem 281:28489–28493

    Article  PubMed  CAS  Google Scholar 

  • Estrada AF, Avalos J (2008) The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet Biol 45:705–718

    Article  PubMed  CAS  Google Scholar 

  • Froehlich AC, Chen CH, Belden WJ, Madeti C, Roenneberg T, Merrow M, Loros JJ, Dunlap JC (2010) Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot Cell 9(5):738–750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC (2013) The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. mBio 4(2):e00142–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartzog PE, Nicholson BP, McCusker JH (2005) Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae. Yeast 22:789–798

  • Holliday J, Cleaver M (2008) Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A review. Int J Med Mushrooms 10(3):219–234

    Article  CAS  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong M, Park Y, Jeong D, Lee C, Kim J, Oh S, Jeong S, Yang K, Jo W (2014) In vitro evaluation of Cordyceps militaris as a potential radioprotective agent. Int J Mol Med 34(5):1349–1357

    PubMed  Google Scholar 

  • Jin CY, Kim GY, Choi YH (2008) Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 cells. J Microbiol Biotechnol 18:1997–2003

    PubMed  CAS  Google Scholar 

  • Kamada T, Sano H, Nakazawa T, Nakahori K (2010) Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genet Biol 47:917–921

    Article  PubMed  Google Scholar 

  • Khang CH, Park SY, Rho HS, Lee YH, Kang S (2007) Filamentous fungi (Magnaporthe grisea and Fusarium oxysporum). In: Wang K (ed) Agrobacterium protocols, vol 2. Humana, Totowa, New Jersey, pp 403–420

    Google Scholar 

  • Kihara J, Moriwaki A, Tanaka N, Ueno M, Arase S (2007) Characterization of the BLR1 gene encoding a putative blue-light regulator in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 266:110–118

    Article  PubMed  CAS  Google Scholar 

  • Kornerup A, Wanscher JH (1978) Methuen handbook of colour. Eyre Methuen, London, UK

    Google Scholar 

  • Lee HH, Park H, Sung GH, Lee K, Lee T, Lee I, Park MS, Jung YW, Shin YS, Kang H, Cho H (2014) Anti-influenza effect of Cordyceps militaris through immunomodulation in a DBA/2 mouse model. J Microbiol 52(8):696–701

    Article  PubMed  Google Scholar 

  • Lian TT, Dong CH, Yang T, Sun JD (2014a) Effects of blue light on the growth and bioactive compound production of Cordyceps militaris. Mycosystema 33(4):838–846

    CAS  Google Scholar 

  • Lian TT, Dong CH, Yang T, Sun JD (2014b) Three types of geranylgeranyl diphosphate synthases from the medicinal fungus Cordyceps militaris. Int J Med Mushrooms 16(2):115–124

  • Linden H (2002) A white collar protein senses blue light. Science 297:777–778

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Ballario P, Macino G (1997) Blue light regulation in Neurospora crassa. Fungal Genet Biol 22:141–150

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and2-∆∆C(T) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinform 21(19):3787–3793

    Article  CAS  Google Scholar 

  • Masloff S, Jacobsen S, Pöggeler S, Kück U (2002) Functional analysis of the C6 zinc finger gene pro1 involved in fungal sexual development. Fungal Genet Biol 36(2):107–116

    Article  PubMed  CAS  Google Scholar 

  • Ohm RA, Aerts D, Wösten HA, Lugones LG (2013) The blue light receptor complex WC-1/2 of Schizophyllum commune is involved in mushroom formation and protection against phototoxicity. Environ Microbiol 15(3):943–955

    Article  PubMed  CAS  Google Scholar 

  • Pöggeler S, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Kück U (2006) Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol Genet Genomics 275:492–503

    Article  PubMed  CAS  Google Scholar 

  • Pruß S, Fetzner R, Seither K, Herr A, Pfeiffer E, Metzler M, Lawrence CB, Fischer R (2014) Role of the Alternaria alternata blue-light receptor LreA (White-Collar 1) in spore formation and secondary metabolism. Appl Environ Microbiol 80(8):2582–2591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18(4):255–259

    Article  PubMed  CAS  Google Scholar 

  • Rosales-Saavedra T, Esquivel-Naranjo EU, Casas-Flores S, Martínez-Hernández P, Ibarra-Laclette E, Cortes-Penagos C, Herrera-Estrella A (2006) Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiol 152:3305–3317

    Article  CAS  Google Scholar 

  • Röhrig J, Kastner C, Fischer R (2013) Light inhibits spore germination through phytochrome in Aspergillus nidulans. Curr Genet 59(1-2):55–62

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Narikiyo T, Kaneko S, Yamazaki T, Shishido K (2007) Sequence analysis and expression of a blue-light photoreceptor gene, Le.phrA from the Basidiomycetous mushroom Lentinula edodes. Biosci Biotechnol Biochem 71:2206–2213

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Shimazu M (2002) Stromata production for Cordyceps militaris (Clavicipitales: Clavicipitaceae) by injection of hyphal bodies to alternative host insects. Appl Entomol Zoo l37:85–92

    Article  Google Scholar 

  • Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A (2010) Trichoderma in the light of day—physiology and development. Fungal Genet Biol 47:909–916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smiderle F, Baggio C, Borato D, Santana-Filho A, Sassaki G, Iacomini M, Van Griensven LL (2014) Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1R3)-β-D-Glucan. PLoS ONE 9(10):e110266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith KM, Sancar G, Dekhang R, Stajich CM, Li SJ, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M (2010) Transcription factors in light and circadian clock signaling networks revealed by genome wide mapping of direct targets for Neurospora white collar complex. Eukaryot Cell 9(10):1549–1556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talora C, Franchi L, Linden H, Ballario P, Macino G (1999) Role of a white collar-1–white collar-2 complex in blue-light signal transduction. EMBO J 18:4961–4968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang LH, Jian HH, Song CY, Bao DP, Shang XD, Wu DQ, Tan Q, Zhang XH (2013) Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Appl Microbiol Biotechnol 97(11):4977–4989

    Article  PubMed  CAS  Google Scholar 

  • Terashima K, Yuki K, Muraguchi H, Akiyama M, Kamada T (2005) The dst1 gene involved in mushroom photomorphogenesis of Coprinus cinereus encodes a putative photoreceptor for blue light. Genetics 171:101–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinform 25(9):1105–1111

    Article  CAS  Google Scholar 

  • Vienken K, Fischer R (2006) The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol Microbiol 61(2):544–554

    Article  PubMed  CAS  Google Scholar 

  • Xiong C, Xia Y, Zheng P, Wang C (2013) Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Appl Microbiol Biotechnol 97:2009–2015

    Article  PubMed  CAS  Google Scholar 

  • Yan XT, Bao HY, Bau T (2010) Isolation and identification of one natural pigment from cultured Cordyceps militaris. Mycosystema 5:777–781

    Google Scholar 

  • Yang T, Dong CH (2014) Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris. FEMS Microbiol Lett 352(2):190–197

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Sun JD, Lian TT, Wang WZ, Dong CH (2014) Process optimization for extraction of carotenoids from Cordyceps militaris, an edible and medicinal fungus. Int J Med Mushrooms 16(2):125–135

    Article  PubMed  CAS  Google Scholar 

  • Yin YL, Yu GJ, Chen YJ, Jiang S, Wang M, Jin YX, Lan XQ, Liang Y, Sun H (2012) Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS ONE 7(12):e51853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14. doi:10.1186/gb-2010-11-2-r14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan JP, Kuang HC, Wang JH, Liu X (2008) Evaluation of ergosterol and its esters in the pileus, gill, and stipe tissues of agaric fungi and their relative changes in the comminuted fungal tissues. Appl Microbiol Biotechnol 80:459–465

    Article  PubMed  CAS  Google Scholar 

  • Zhan Y, Dong CH, Yao YJ (2006) Antioxidant activities of aqueous extract from cultivated fruiting-bodies of Cordyceps militaris in vitro. J Integr Plant Biol 48:1365–1370

    Article  CAS  Google Scholar 

  • Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Gen Genom 268:645–655

  • Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S (2011a) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12:R116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng Z, Huang C, Cao L, Xie C, Han R (2011b) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115(3):265–274

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Gong Z, Su Y, Lin J, Tang K (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 61:279–291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Xingzhong Liu (Institute of Microbiology, Chinese Academy of Sciences) and Chengshu Wang (Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, CAS) for their critical reviews and valuable suggestions. We are also grateful to Prof. Xingzhong Liu and Qiming Wang (Institute of Microbiology, CAS) for providing the pAg1-H3 and pBN50 plasmids. This work was supported by the National Basic Research Program of China (2014CB138302), the National Natural Science Foundation of China (31572179), the project of the State Key Laboratory of Mycology, Institute of Microbiology, CAS, Technical Assistance Projects in Developing Countries from the Ministry of Science and Technology of China (KY20110097), and the Coal-based Key Scientific and Technological Project from Shanxi Province (FT2014-03-01). The authors also sincerely thank the unknown reviewers and editors for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihong Dong.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 991 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Guo, M., Yang, H. et al. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris . Appl Microbiol Biotechnol 100, 743–755 (2016). https://doi.org/10.1007/s00253-015-7047-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7047-6

Keywords

Navigation