Skip to main content
Log in

The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The up-flow anaerobic sludge blanket (UASB) reactor is a promising method for the treatment of high-strength industrial wastewaters due to advantage of its high treatment capacity and settleable suspended biomass retention. Molasses wastewater as a sugar-rich waste is one of the most valuable raw material for bioenergy production due to its high organic strength and bioavailability. Interpretation for complex interactions of microbial community structures and operational parameters can help to establish stable biogas production. RNA-based approach for biogas production systems is recommended for analysis of functionally active community members which are significantly underestimated. In this study, methane production and active microbial community were characterized in an UASB reactor using molasses wastewater as feedstock. The UASB reactor achieved a stable process performance at an organic loading rate of 1.7~13.8-g chemical oxygen demand (COD,·L−1 day−1; 87–95 % COD removal efficiencies), and the maximum methane production rate was 4.01 L-CH4·at 13.8 g-COD L−1 day−1. Lactococcus and Methanosaeta were comprised up to 84 and 80 % of the active bacterial and archaeal communities, respectively. Network analysis of reactor performance and microbial community revealed that Lactococcus and Methanosaeta were network hub nodes and positively correlated each other. In addition, they were positively correlated with methane production and organic loading rate, and they shared the other microbial hub nodes as neighbors. The results indicate that the close association between Lactococcus and Methanosaeta is responsible for the stable production of methane in the UASB reactor using molasses wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • AkkoÇ N, Ghamat A, AkÇelik M (2011) Optimisation of bacteriocin production of Lactococcus lactis subsp. lactis MA23, a strain isolated from Boza. Int J Dairy Technol 64:425–432

    Article  Google Scholar 

  • Assenov Y, Ramírez F, Schelhorn S.-E, Lengauer T, Albrecht M 2008. Computing topological parameters of biological networks. Bioinformatics, 24, 282-284.

  • Azizan KA, Baharum SN, Mohd Noor N (2012) Metabolic profiling of Lactococcus lactis under different culture conditions. Molecules 17:8022–8036

    Article  CAS  PubMed  Google Scholar 

  • Boopathy R, Tilche A (1991) Anaerobic digestion of high strength molasses wastewater using hybrid anaerobic baffled reactor. Water Res 25:785–790

    Article  CAS  Google Scholar 

  • Bӧrjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Article  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370

    Article  CAS  PubMed  Google Scholar 

  • Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190

    Article  CAS  Google Scholar 

  • Díaz EE, Stams AJM, Amils R, Sanz JL (2006) Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Environ Microbiol 72:4942–4949

    Article  PubMed Central  PubMed  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fall PA, Leroi, F., Chevalier, F., Guérin, C., Pilet, M.-F., 2010. Protective effect of a non-bacteriocinogenic Lactococcus piscium CNCM I-4031 strain against Listeria monocytogenes in sterilized tropical cooked peeled shrimp. J Aquat Food Prod Technol, 19, 84-92.

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Micro 10:538–550

    Article  CAS  Google Scholar 

  • Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M., Gartemann K.-H, Junemann S, Kaiser, O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A, 2011. Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One, 6, e14519.

  • Janssen PH, Evers S, Rainey FA, Weiss N, Ludwig W, Harfoot CG, Schink B (1995) Lactosphaera gen. nov., a new genus of lactic acid bacteria, and transfer of Ruminococcus pasteurii Schink 1984 to Lactosphaera pasteurii comb. nov. Int J Syst Bacteriol 45:565–571

    Article  CAS  PubMed  Google Scholar 

  • Kim TG, Moon K-E, Yun J, Cho K-S (2013) Comparison of RNA- and DNA-based bacterial communities in a lab-scale methane-degrading biocover. Appl Microbiol Biotechnol 97:3171–3181

    Article  CAS  PubMed  Google Scholar 

  • Kim TG, Jeong S-Y, Cho K-S (2014) Functional rigidity of a methane biofilter during the temporal microbial succession. Appl Microbiol Biotechnol 98:3275–3286

    Article  CAS  PubMed  Google Scholar 

  • Leclerc M, Delgènes J-P, Godon J-J (2004) Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6:809–819

    Article  CAS  PubMed  Google Scholar 

  • Lee J-Y, Yun J, Kim TG, Wee D, Cho K-S (2014) Two-stage biogas production by co-digesting molasses wastewater and sewage sludge. Bioprocess Biosyst Eng 1-13

  • Lim SJ, Kim T-H (2014) Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenerg 60:189–202

    Article  CAS  Google Scholar 

  • Lin P-Y, Whang L-M, Wu Y-R, Ren W-J, Hsiao C-J, Li S-L, Chang J-S (2007) Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int J Hydrog Energy 32:1728–1735

    Article  CAS  Google Scholar 

  • Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy 27:1367–1371

    Article  CAS  Google Scholar 

  • Ohnishi A, Hasegawa Y, Abe S, Bando Y, Fujimoto N, Suzuki M (2012) Hydrogen fermentation using lactate as the sole carbon source: solution for ‘blind spots’ in biofuel production. RSC Advances 2:8332–8340

    Article  CAS  Google Scholar 

  • Onodera T, Sase S, Choeisai P, Yoochatchaval W, Sumino H, Yamaguchi T, Ebie Y, Xu K, Tomioka N, Syutsubo K (2011) High-rate treatment of molasses wastewater by combination of an acidification reactor and a USSB reactor. J Environ Sci Health, Part A 46:1721–1731

    Article  CAS  Google Scholar 

  • Onodera T, Sase S, Choeisai P, Yoochatchaval W, Sumino H, Yamaguchi T, Ebie Y, Xu K, Tomioka N, Mizuochi M, Syutsubo K (2012) Evaluation of process performance and sludge properties of an up-flow staged sludge blanket (USSB) reactor for treatment of molasses wastewater. Int J Environ Res 6:1015–1024

    CAS  Google Scholar 

  • Oude Elferink SJWH, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67:125–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reysenbach A-L, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a mid-Atlantic ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7:408–415

    Article  CAS  Google Scholar 

  • Sánchez Riera F, Córdoba P, Siñeriz F (1985) Use of the UASB reactor for the anaerobic treatment of stillage from sugar cane molasses. Biotechnol Bioeng 27:1710–1716

    Article  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt JE, Ahring BK (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49:229–246

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

  • Sørensen KB, Teske A (2006) Stratified communities of active archaea in deep marine subsurface sediments. Appl Environ Microbiol 72:4596–4603

    Article  PubMed Central  PubMed  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Micro 7:568–577

    Article  CAS  Google Scholar 

  • Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow C-ET, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun F, Caron DA, Fuhrman JA (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425

    Article  PubMed Central  PubMed  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen, S.J., Karlsson, A., 2013. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol, 85, 612-626.

  • ten Brummeler E, Pol LWH, Dolfing J, Lettinga G, Zehnder AJB (1985) Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture. Appl Environ Microbiol 49:1472–1477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia L, Steele J, Cram J, Cardon Z, Simmons S, Vallino J, Fuhrman J, Sun F (2011) Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst Biol 5:S15

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2012R1A2A2A03046724).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Suk Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.G., Yun, J. & Cho, KS. The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor. Appl Microbiol Biotechnol 99, 8271–8283 (2015). https://doi.org/10.1007/s00253-015-6725-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6725-8

Keywords

Navigation