Skip to main content
Log in

Mutant screening for oncogenes of Ewing’s sarcoma using yeast

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Many fusion genes, which are the result of chromosomal translocation and work as an oncogene, have been recently identified, but their mode of actions is still unclear. Here, we performed a yeast mutant screening for oncogenes of Ewing’s sarcoma to easily identify essential regions responsible for fusion protein functions using a yeast genetic system. Three kinds of oncogenes including EWS/FLI1, EWS/ERG, and EWS/E1AF exhibited growth inhibition in yeast. In this screening, we identified 13 single amino acid substitution mutants which could suppress growth inhibition by oncogenes. All of the point mutation positions of the EWS/ETS family proteins were located within the ETS domain, which is responsible for the interaction with a specific DNA motif. Eight-mutated residues within the ETS domain matched to 13 completely conserved amino acid residues in the human ETS domains. Moreover, mutants also showed reduced transcriptional activities on the DKK2 promoter, which is upregulated by the EWS/ETS family, compared to that of the wild type. These results suggest that the ETS domain in the EWS/ETS family proteins may be a primary target for growth inhibition of Ewing’s sarcoma and that this yeast screening system can be applied for the functional screening of the oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith J, Struhl K (1999) Short protocols in molecular biology, fifth edition edn. John Wiley & Sons, Inc

  • Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, Thomas G, Ghysdael J (1994) DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 14(5):3230–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J, Palanisamy N, Siddiqui J, Yan W, Cao X, Mehra R, Sabolch A, Basrur V, Lonigro RJ, Yang J, Tomlins SA, Maher CA, Elenitoba-Johnson KS, Hussain M, Navone NM, Pienta KJ, Varambally S, Feng FY, Chinnaiyan AM (2011) Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19(5):664–78. doi:10.1016/j.ccr.2011.04.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brenner JC, Feng FY, Han S, Patel S, Goyal SV, Bou-Maroun LM, Liu M, Lonigro R, Prensner JR, Tomlins SA, Chinnaiyan AM (2012) PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res 72(7):1608–13. doi:10.1158/0008-5472.CAN-11-3648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cha-aim K, Fukunaga T, Hoshida H, Akada R (2009) Reliable fusion PCR mediated by GC-rich overlap sequences. Gene 434(1-2):43–9

    Article  CAS  PubMed  Google Scholar 

  • Dohjima T, Lee NS, Li H, Ohno T, Rossi JJ (2003) Small interfering RNAs expressed from a Pol III promoter suppress the EWS/Fli-1 transcript in an Ewing sarcoma cell line. Mol Ther 7(6):811–6

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga T, Cha-Aim K, Hirakawa Y, Sakai R, Kitagawa T, Nakamura M, Nonklang S, Hoshida H, Akada R (2013) Designed construction of recombinant DNA at the ura3Delta0 locus in the yeast Saccharomyces cerevisiae. Yeast 30(6):243–53. doi:10.1002/yea.2957

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata R, Bebok Z, Sorscher EJ, Sztul ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146(6):1239–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoshida H, Fujita T, Cha-Aim K, Akada R (2013) N-glycosylation deficiency enhanced heterologous production of a Bacillus licheniformis thermostable alpha-amylase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(12):5473–82. doi:10.1007/s00253-012-4582-2

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Philips AS, Kwok JC, Eisbacher M, Chong BH (2005) Identification of nuclear import and export signals within Fli-1: roles of the nuclear import signals in Fli-1-dependent activation of megakaryocyte-specific promoters. Mol Cell Biol 25(8):3087–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaishankar S, Zhang J, Roussel MF, Baker SJ (1999) Transforming activity of EWS/FLI is not strictly dependent upon DNA-binding activity. Oncogene 18(40):5592–7. doi:10.1038/sj.onc.1202940

    Article  CAS  PubMed  Google Scholar 

  • Keppler-Ross S, Noffz C, Dean N (2008) A new purple fluorescent color marker for genetic studies in Saccharomyces cerevisiae and Candida albicans. Genetics 179(1):705–10. doi:10.1534/genetics.108.087080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovar H, Aryee D, Zoubek A (1999) The Ewing family of tumors and the search for the Achilles’ heel. Curr Opin Oncol 11(4):275–84

    Article  CAS  PubMed  Google Scholar 

  • Kovar H, Aryee DN, Jug G, Henockl C, Schemper M, Delattre O, Thomas G, Gadner H (1996) EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ 7(4):429–37

    CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–8

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Miesfeldt S, Yang H, Leiden JM, Thompson CB (1994) The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities. J Biol Chem 269(27):18216–22

    CAS  PubMed  Google Scholar 

  • May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, Zucman J, Thomas G, Denny CT (1993a) Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A 90(12):5752–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB, Hromas R, Denny CT (1993b) The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol 13(12):7393–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyagawa Y, Okita H, Itagaki M, Toyoda M, Katagiri YU, Fujimoto J, Hata J, Umezawa A, Kiyokawa N (2009) EWS/ETS regulates the expression of the Dickkopf family in Ewing family tumor cells. PLoS One 4(2), e4634. doi:10.1371/journal.pone.0004634

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyagawa Y, Okita H, Nakaijima H, Horiuchi Y, Sato B, Taguchi T, Toyoda M, Katagiri YU, Fujimoto J, Hata J, Umezawa A, Kiyokawa N (2008) Inducible expression of chimeric EWS/ETS proteins confers Ewing’s family tumor-like phenotypes to human mesenchymal progenitor cells. Mol Cell Biol 28(7):2125–37. doi:10.1128/MCB.00740-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riggi N, Suva ML, Suva D, Cironi L, Provero P, Tercier S, Joseph JM, Stehle JC, Baumer K, Kindler V, Stamenkovic I (2008) EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res 68(7):2176–85. doi:10.1158/0008-5472.CAN-07-1761

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y (1997) EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest 99(2):239–47. doi:10.1172/JCI119152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11(11):777–88. doi:10.1038/nrm2993

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yukie Misumi for their technical support. The authors would like to acknowledge the utilization of the LAS-1000 and a gift of pGL4.74[hRluc/TK] vector and HEK293 cells from the DNA Core Facility of the Center for Gene Research, Yamaguchi University, supported by a grant-in-aid from the Ministry of Education, Science, Sports and Culture of Japan.

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Kitagawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitagawa, T., Okita, H., Baron, B. et al. Mutant screening for oncogenes of Ewing’s sarcoma using yeast. Appl Microbiol Biotechnol 99, 6737–6744 (2015). https://doi.org/10.1007/s00253-015-6621-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6621-2

Keywords

Navigation