Skip to main content
Log in

Current progress on truffle submerged fermentation: a promising alternative to its fruiting bodies

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Truffle (Tuber spp.), also known as “underground gold,” is popular in various cuisines because of its unique and characteristic aroma. Currently, truffle fruiting bodies are mostly obtained from nature and semi-artificial cultivation. However, the former source is scarce, and the latter is time-consuming, usually taking 4 to 12 years before harvest of the fruiting body. The truffle submerged fermentation process was first developed in Tang’s lab as an alternative to its fruiting bodies. To the best of our knowledge, most reports of truffle submerged fermentation come from Tang’s group. This review examines the current state of the truffle submerged fermentation process. First, the strategy to optimize the truffle submerged fermentation process is summarized; the final conditions yielded not only the highest reported truffle biomass but also the highest production of extracellular and intracellular polysaccharides. Second, the comparison of metabolites produced by truffle fermentation and fruiting bodies is presented, and the former were superior to the latter. Third, metabolites (i.e., volatile organic compounds, equivalent umami concentration, and sterol) derived from truffle fermentation could be regulated by fermentation process optimization. These findings indicated that submerged fermentation of truffles can be used for commercial production of biomass and metabolites as a promising alternative to generating its fruiting bodies in bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Águeda B, Zambonelli A, Molina R (2013) Tuber 2013: scientific advances in sustainable truffle culture. Mycorrhiza 24(Suppl 1):S1–S4

    Google Scholar 

  • Amicucci A, Balestrini R, Kohler A, Barbieri E, Saltarelli R, Faccio A, Roberson RW, Bonfante P, Stocchi V (2011) Hyphal and cytoskeleton polarization in Tuber melanosporum: a genomic and cellular analysis. Fungal Genet Biol 48:561–572

    Article  CAS  PubMed  Google Scholar 

  • Arambepola C, Scarborough P, Boxer A, Rayner M (2008) Defining ‘low in fat’ and ‘high in fat’ when applied to a food. Public Health Nutr 12:341–350

    PubMed  Google Scholar 

  • Balestrini R, Mello A (2014) Truffle research in the Post-Genomics Era. Food Anal Methods. doi:10.1007/s12161-014-0064-8

    Google Scholar 

  • Bellesia F, Pinetti A, Bianchi A, Tirillini B (1998a) The volatile organic compounds of Tuber uncinatum from Middle Italy. J Essent Oil Res 10:483–488

    Article  CAS  Google Scholar 

  • Bellesia F, Pinetti A, Bianchi A, Tirillini B (1998b) The volatile organic compounds of black truffle (Tuber melanosporum Vitt.) from Middle Italy. Flavour Frag J 13:56–58

    Article  CAS  Google Scholar 

  • Bolchi A, Ruotolo R, Marchini G, Vurro E, Sanità di Toppi L, Kohler A, Tisserant E, Martin F, Ottonello S (2011) Genome-wide inventory of metal homeostasis-related gene products including a functional phytochelatin synthase in the hypogeous mycorrhizal fungus Tuber melanosporum. Fungal Genet Biol 48:573–584

    Article  CAS  PubMed  Google Scholar 

  • Bonito GM, Gryganskyi AP, Trappe JM, Vilgalys R (2010) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol 19:4994–5008

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Gasparetti C, Turchetti B, Cramarossa MR, Vaughan-Martini A, Martini A, Pagnoni UM, Forti L (2005) Production of volatile organic compounds by yeasts isolated from the ascocarps of black (Tuber melanopsorum Vitt) and white (Tuber magnatum Pico) truffles. Arch Microbiol 184:187–193

    Article  CAS  PubMed  Google Scholar 

  • Ceccaroli P, Buffalini M, Saltarelli R, Barbieri E, Polidori E, Ottonello S, Kohler A, Tisserant E, Martin F, Stocchi V (2011) Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. New Phytol 189:751–764

    Article  CAS  PubMed  Google Scholar 

  • Cho IH, Choi HK, Kim YS (2010) Comparison of umami-taste active components in the pileus and stipe of pine-mushrooms (Tricholoma matsutake Sing.) of different grades. Food Chem 118:804–807

    Article  CAS  Google Scholar 

  • Claus R, Hoppen HO, Karg H (1981) The secret of truffles: a steroidal pheromone? Experientia 37:1178–1179

    Article  CAS  Google Scholar 

  • Culleré L, Ferreira V, Chevret B, Venturini ME, Sánchez-Gimeno AC, Blanco D (2010) Characterization of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography-olfactometry. Food Chem 122:300–306

    Article  Google Scholar 

  • Culleré L, Ferreira V, Venturini ME, Marco P, Blanco D (2013) Potential aromatic compounds as markers to differentiate between Tuber melanosporum and Tuber indicum truffles. Food Chem 41(1):105–110

  • Díaz P, Ibáñez E, Señoráns FJ, Reglero G (2003) Truffle aroma characterization by headspace solid-phase microextraction. J Chromatogr A 1017:207–214

    Article  PubMed  Google Scholar 

  • Díaz P, Ibáñez E, Reglero G, Señoráns FJ (2009) Optimization of summer truffle aroma analysis by SPME: comparison of extraction with different polarity fibers. LWT-Food Sci Technol 42:1253–1259

    Article  Google Scholar 

  • Fillet M, Van Heugen JC, Servais AC, De Graeve J, Crommen J (2002) Separation, identification and quantitation of ceramides in human cancer cells by liquid chromatography–electrospray ionization tandem mass spectrometry. J Chromatogr A 949:225–233

    Article  CAS  PubMed  Google Scholar 

  • Gao JM, Zhang AL, Chen H, Liu JK (2004) Molecular species of ceramides from the ascomycete truffle Tuber indicum. Chem Phys Lipids 131:205–213

    Article  CAS  PubMed  Google Scholar 

  • Geng LY, Wang XH, Yu FQ, Deng XJ, Tian XF, Shi XF, Xie XD, Liu PG, Shen YY (2009) Mycorrhizal synthesis of Tuber indicum with two indigenous hosts, Castanea mollissima and Pinus armandii. Mycorrhiza 19:461–467

    Article  PubMed  Google Scholar 

  • Hall I, Yum W, Amicucci A (2003) Cultivation of edible mycorrhizal mushrooms. Trends Biotechnol 21:433–438

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995a) Truffle: dictionary of the fungi. University Press, Cambridge, pp 467–469

    Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995b) Truffles dictionary of the fungi. University Press, Cambridge, pp 467–469

    Google Scholar 

  • Hu HJ, Li PZ, Lin T, Hang BQ, Guo YW (1994) Effects of polysaccharide of Tuber sinica on tumor and immune system of mice. J Chin Pharmaceut Univ l25(5):289–292, in Chinese

    Google Scholar 

  • Huang SJ, Tsai SY, Lee YL, Mau JL (2006) Nonvolatile taste components of fruit bodies and mycelia of Cordyceps militaris. LWT Food Sci Technol 39:577–583

    Article  CAS  Google Scholar 

  • Islam MT, Mohamedali A, Garg G, Khan JM, Gorse AD, Parsons J, Marshall P, Ranganathan S, Baker MS (2013) Unlocking the puzzling biology of the black Périgord truffle Tuber melanosporum. J Proteome Res 12(12):5349–5356

    Article  CAS  PubMed  Google Scholar 

  • Kües U, Martin F (2011) On the road to understanding truffles in the underground. Fungal Genet Biol 48:555–560

    Article  PubMed  Google Scholar 

  • Li YY, Wang G, Li HM, Zhong JJ, Tang YJ (2012) Volatile organic compounds from Tuber melanosporum fermentation system. Food Chem 135:2628–2637

    Article  CAS  PubMed  Google Scholar 

  • Li DC, Liu RS, Li HM, Yuan ZP, Chen T, Tang YJ (2014) Ranking the significance of fermentation condition on the volatile organic compounds of Tuber melanosporum fermentation system by combination of head-space solid phase microextraction and chromatographic fingerprint similarity analysis. Bioprocess Biosyst Eng 37(3):543–552

    Article  CAS  PubMed  Google Scholar 

  • Liu RS, Tang YJ (2010a) Quantitative analysis for the effect of plant oil and fatty acid on Tuber melanosporum culture by uniform design combined with partial least squares regression. Appl Microbiol Biotechnol 87:1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Liu RS, Tang YJ (2010b) Tuber melanosporum fermentation medium optimization by Plackett-Burman design coupled with Draper-Lin small composite design and desirability function. Bioresource Technol 101:3139–3146

    Article  CAS  Google Scholar 

  • Liu RS, Li DS, Li HM, Tang YJ (2008) Response surface modeling the significance of nitrogen source on the submerged cultivation of Chinese truffle Tuber sinense. Process Biochem 43:868–876

    Article  CAS  Google Scholar 

  • Liu QN, Liu RS, Wang YH, Mi ZY, Li DS, Zhong JJ, Tang YJ (2009) Fed-batch fermentation of Tuber melanosporum for the hyperproduction of mycelia and bioactive Tuber polysaccharides. Bioresource Technol 10:3644–3649

    Article  Google Scholar 

  • Liu P, Li YY, Li HM, Wan DJ, Tang YJ (2011) Determination of the nucleosides and nucleobases in Tuber samples by dispersive solid-phase extraction combined with liquid chromatography–mass spectrometry. Anal Chim Acta 687:159–167

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Li HM, Tang YJ (2012a) Comparison of free amino acids and 5′-nucleotides between Tuber fermentation mycelia and natural fruiting bodies. Food Chem 132:1413–1419

    Article  CAS  Google Scholar 

  • Liu RS, Li DC, Li HM, Tang YJ (2012b) Evaluation of aroma active compounds in Tuber fruiting bodies by gas chromatography-olfactometry in combination with aroma reconstitution and omission test. Appl Microbiol Biotechnol 94:353–363

    Article  CAS  PubMed  Google Scholar 

  • Liu RS, Zhou H, Li HM, Yuan ZP, Chen T, Tang YJ (2013) Metabolism of l-methionine linked to the biosynthesis of volatile organic sulfur-containing compounds during the submerged fermentation of Tuber melanosporum. Appl Microbiol Biotechnol 97:9981–9992

    Article  CAS  PubMed  Google Scholar 

  • Luard E (2006) Truffles. Berry & Co., Ltd., Childs Hill, London

    Google Scholar 

  • March RE, Richards DS, Ryan RW (2006) Volatile compounds from six species of truffle-head-space analysis and vapor analysis at high mass resolution. Int J Mass Spectrom 249:60–67

    Article  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buee M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Ar V, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Mattila P, Lampi AM, Ronkainen R, Toivo J, Piironen V (2002) Sterol and vitamin D2 contents in some wild and cultivated mushrooms. Food Chem 76:293–298

    Article  CAS  Google Scholar 

  • Mau JL (2005) The umami taste of edible and medicinal mushrooms. Int J Med Mushrooms 7:119–125

    Article  CAS  Google Scholar 

  • Mau JL, Lin HC, Ma JT, Song SF (2001) Non-volatile taste components of several speciality mushrooms. Food Chem 73:461–466

    Article  CAS  Google Scholar 

  • Mauriello G, Marino R, D’Auria M, Cerone G, Rana GL (2004) Determination of volatile organic compounds from truffles via SPME-GC-MS. J Chromatogr Sci 42:299–305

    Article  CAS  PubMed  Google Scholar 

  • Mello A, Murat C, Bonfante P (2006) Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol Lett 260(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Montanini B, Levati E, Bolchi A, Kohler A, Morin E, Tisserant E, Martin F, Ottonello S (2011) Genome-wide search and functional identification of transcription factors in the mycorrhizal fungus Tuber melanosporum. New Phytol 189:736–750

    Article  CAS  PubMed  Google Scholar 

  • Pelusio F, Nilsson T, Montanarella L, Tilio R, Larse B, Facchetti S, Madsen JØ (1995) Headspace solid-phase microextraction analysis of volatile organic sulfur compounds in black and white truffle aroma. J Agric Food Chem 43:2138–2143

    Article  CAS  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966

    Article  CAS  Google Scholar 

  • Piloni M, Tat L, Tonizzo A, Battistutta F (2005) Aroma characterisation of white truffle by GC–MS and GC–O. Ital J Food Sci 17(4):463–468

    CAS  Google Scholar 

  • Samils N, Olivera A, Danell E, Alexander SJ, Fischer C, Colinas C (2008) The socioeconomic impact of truffle cultivation in rural Spain. Econ Bot 62:331–340

    Article  Google Scholar 

  • Splivallo R, Bossi S, Maffei M, Bonfante P (2007) Discrimination of truffle fruiting-body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    Article  CAS  PubMed  Google Scholar 

  • Streiblová E, Gryndlerová H, Gryndler M (2012) Truffle brûlé: an efficient fungal life strategy. FEMS Microbiol Ecol 80:1–8

    Article  PubMed  Google Scholar 

  • Talou T, Delmas M, Gaset A (1989) Direct capture of volatiles emitted from entire black Perigord truffle. J Essent Oil Res 1:281–286

    Article  CAS  Google Scholar 

  • Talou T, Gaset A, Delmas M, Kulifaj M, Montant C (1990) Dimethyl sulphide: the secret for black truffle hunting by animals? Mycol Res 94:277–278

    Article  CAS  Google Scholar 

  • Tang YJ, Kong GP, Zhu LL, Liu RS, Li DS (2007a) Advance in studies on active constitutes from truffle and its artificial cultivation. Chin Tradit Herb Drugs 38(4):629–632 (in Chinese)

    CAS  Google Scholar 

  • Tang YJ, Zhu LW, Li HM, Li DS (2007b) Submerged fermentation of mushroom in bioreactors-challenges, current state-of-the-art, and future prospects. Food Technol Biotechnol 45(3):221–229

    CAS  Google Scholar 

  • Tang YJ, Zhu LL, Liu RS, Li YY, Li DS, Mi ZY, Li HM (2008a) Quantitative response of cell growth and Tuber polysaccharides biosynthesis by medicinal mushroom Chinese truffle Tuber sinense to metal ion in culture medium. Bioresource Technol 99:7606–7615

    Article  CAS  Google Scholar 

  • Tang YJ, Zhu LL, Li DS, Mi ZY, Li HM (2008b) Significance of inoculation density and carbon source on the mycelial growth and Tuber polysaccharides production by submerged fermentation of Chinese truffle Tuber sinense. Process Biochem 43:576–586

    Article  CAS  Google Scholar 

  • Tang YJ, Wang G, Li YY, Zhong JJ (2009) Fermentation condition outweighed truffle species in affecting volatile organic compounds analyzed by chromatographic fingerprint system. Anal Chim Acta 647:40–45

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Li YY, Li HM, Wan DJ, Tang YJ (2011) Comparison of lipid content and fatty acid composition between Tuber fermentation mycelia and natural fruiting-bodies. J Agric Food Chem 59:4736–4742

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Li HM, Tang YJ (2012) Comparison of sterol composition between Tuber fermentation mycelia and natural fruiting bodies. Food Chem 132:1207–1213

    Article  CAS  Google Scholar 

  • Tsai SY, Weng CC, Huang SJ, Chen CC, Mau JL (2006) Nonvolatile taste components of Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. LWT-Food Sci Technol 39:1066–1071

    Article  CAS  Google Scholar 

  • Tsai SY, Wu TP, Huang SJ, Mau JL (2007) Nonvolatile taste components of Agaricus bisporus harvested at different stages of maturity. Food Chem 103:1457–1464

    Article  CAS  Google Scholar 

  • Tseng YH, Lee YL, Li RC, Mau JL (2005) Non-volatile flavour components of Ganoderma tsugae. Food Chem 90:409–415

    Article  CAS  Google Scholar 

  • Wang S, Marcone MF (2011) The biochemistry and biological properties of the world’s most expensive underground edible mushroom: truffles. Food Res Int 44:2567–2581

    Article  CAS  Google Scholar 

  • Wang G, Li YY, Li DS, Tang YJ (2008) Determination of 5α-androst-16-en-3α-ol in truffle fermentation broth by solid-phase extraction coupled with gas chromatography-flame ionization detector/electron impact mass spectrometry. J Chromatogr B 870:209–215

    Article  CAS  Google Scholar 

  • Yamaguchi S, Yoshikawa T, Ikeda S, Ninomiya T (1971) Measurement of the relative taste intensity of some l-α-amino acids and 5′-nucleotides. J Food Sci 36:846–849

    Article  CAS  Google Scholar 

  • Yang JH, Lin HC, Mau JL (2001) Non-volatile taste components of several commercial mushrooms. Food Chem 72:465–471

    Article  CAS  Google Scholar 

  • Zampieri E, Balestrini R, Kohler A, Abbà S, Martin F, Bonfante P (2011) The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genet Biol 48:585–591

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Wang XH, Li HM, Wang SH, Chen T, Yuan ZP, Tang YJ (2014) Isolation and characterization of polysaccharides with the anti-tumor activity from Tuber fruiting bodies and fermentation system. Appl Microbiol Biotechnol 98:1991–2002

    Article  CAS  PubMed  Google Scholar 

  • Zhong JJ, Tang YJ (2004) Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Adv Biochem Eng/Biotechnol 87:25–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (NSFC, Project Nos. 21176059, 21206035, and 21376066), the Hubei Provincial Natural Science Foundation for Agriculture (2012DBA20001), and the High-Tech Industry Development Program for Innovative Research Team in Wuhan Municipality (2013070204020049) are gratefully acknowledged. Ya-Jie Tang also thanks the Chutian Scholar Program (Hubei Provincial Department of Education, China) (2006), the National High Level Talents Special Support Plan (“Million People Plan”) from the Organization Department of the CPC Central Committee, Training Program for the Youth Leading Talents by Ministry of Science and Technology, Program for New Century Excellent Talents in University (NCET-11-0961), and Training Program for Top Talents in Hubei Province.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Jie Tang.

Additional information

Ya-Jie Tang and Rui-Sang Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, YJ., Liu, RS. & Li, HM. Current progress on truffle submerged fermentation: a promising alternative to its fruiting bodies. Appl Microbiol Biotechnol 99, 2041–2053 (2015). https://doi.org/10.1007/s00253-015-6379-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6379-6

Keywords

Navigation