Skip to main content
Log in

Evaluation of aroma active compounds in Tuber fruiting bodies by gas chromatography–olfactometry in combination with aroma reconstitution and omission test

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aroma active compounds of three Tuber fruiting bodies (i.e., Tuber himalayense, Tuber indicum, and Tuber sinense) were firstly systematically evaluated by instrumental gas chromatography–olfactometry combining with quantitative analysis, aroma reconstitution, and omission tests. Twelve aroma active compounds were characterized by aroma extract dilution analysis, and 3-(methylthio) propanal, 3-methylbutanal, and 1-octen-3-ol with the highest flavor dilution (FD) factor (i.e., 1,024–2,048) were suggested as key contributors to the aroma. Odor activity value (OAV) was employed to determine the relative contribution of each compound to the aroma, and the compound with the highest FD factor also had the highest OAV (i.e., 10,234–242,951). Then, the synthetic blends of odorants (aroma reconstitution) were prepared with OAV larger than 15, and their aromas were very similar to the originals. Omission tests were carried out to verify the significance of 3-(methylthio) propanal, 1-octen-3-ol, and 3-methylbutanal as key compounds in the aroma of tested Tuber fruiting bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aceña L, Vera L, Guasch J, Busto O, Mestres M (2011) Determination of roasted pistachio (Pistacia vera L.) key odorants by headspace solid-phase microextraction and gas chromatography–olfactometry. J Agric Food Chem 59:2518–2523

    Article  Google Scholar 

  • Bellesia F, Pinetti A, Bianchi A, Tirillini B (1996) Volatile compounds of white truffle (Tuber magnatum Pico) from Middle Italy. Flavour Frag J 11:239–243

    Article  CAS  Google Scholar 

  • Bellesia F, Pinetti A, Bianchi A, Tirillini B (1998a) The volatile organic compounds of Tuber uncinatum from Middle Italy. J Essent Oil Res 10:483–488

    CAS  Google Scholar 

  • Bellesia F, Pinetti A, Bianchi A, Tirillini B (1998b) The volatile organic compounds of black truffle (Tuber melanosporum Vitt.) from Middle Italy. Flavour Fragr J 13:56–58

    Article  CAS  Google Scholar 

  • Bertault G, Raymond M, Berthomieu A, Callot G, Fernández D (1998) Trifling variation in truffles. Nature 394:734

    Article  CAS  Google Scholar 

  • Buettner A, Schieberle P (2001) Evaluation of aroma differences between hand-squeezed juices from Valencia late and navel oranges by quantitation of key odorants and flavor reconstitution experiments. J Agric Food Chem 49:2387–2394

    Article  CAS  Google Scholar 

  • Burbank HM, Qian MC (2005) Volatile sulfur compounds in Cheddar cheese determined by headspace solid-phase microextraction and gas chromatograph-pulsed flame photometric detection. J Chromatogr A 1066:149–157

    Article  CAS  Google Scholar 

  • Canuti V, Conversano M, Calzi LM, Heymann H, Matthews MA, Ebeler SE (2009) Headspace solid-phase microextraction–gas chromatography–mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. J Chromatogr A 1216:3012–3022

    Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829

    Article  CAS  Google Scholar 

  • Choi HS, Kondo Y, Sawamura M (2002) Characterization of the odor-active volatiles in citrus Hyuganatsu (Citrus tamurana Hort. ex Tanaka). J Agric Food Chem 50:4048–4054

    Article  Google Scholar 

  • Claus R, Hoppen HO, Karg H (1981) The secret of truffles: a steroidal pheromone? Experientia 37:1178–1179

    Article  CAS  Google Scholar 

  • Culleré L, Ferreira V, Chevret B, Venturini ME, Sánchez-Gimeno AC, Blanco D (2010) Characterization of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by Gas Chromatography-Olfactometry. Food Chem 122:300–306

    Article  Google Scholar 

  • Curioni PMG, Bosset JO (2002) Key odorants in various cheese types as determined by gas chromatography–olfactometry. Int Dairy J 12:959–984

    Article  CAS  Google Scholar 

  • Delahunty CM, Eyres G, Dufour JP (2006) Gas chromatography–olfactometry. J Sep Sci 29:2107–2125

    Article  CAS  Google Scholar 

  • Díaz P, Ibáñez E, Señoráns FJ, Reglero G (2003) Truffle aroma characterization by headspace solid-phase microextraction. J Chromatogr A 1017:207–214

    Article  Google Scholar 

  • Díaz P, Ibáñez E, Reglero G, Señoráns FJ (2009) Optimization of summer truffle aroma analysis by SPME: comparison of extraction with different polarity fibers. LWT-Food Sci Technol 42:1253–1259

    Article  Google Scholar 

  • Ferreira V, Ortín N, Escudero A, López R, Cacho J (2002) Chemical characterization of the aroma of Grenache rosé wines: aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J Agric Food Chem 50:4048–4054

    Article  CAS  Google Scholar 

  • Gioacchini AM, Menotta M, Bertini L, Rossi I, Zeppa S, Zambonelli A, Piccoli G, Stocchi V (2005) Solid-phase microextraction gas chromatography/mass spectrometry: a new method for species identification of truffles. Rapid Commun Mass Spectrom 19:2365–2370

    Article  CAS  Google Scholar 

  • Grosch W (2001) Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses 26:533–545

    Article  CAS  Google Scholar 

  • Guth H, Grosch W (1999) Evaluation of important odorants in foods by dilution techniques. In: Teranishi R, Wick EL, Hornstein I (eds) Flavor chemistry: thirty years of progress. Kluwer Academic/Plenum, New York, pp 377–386

    Google Scholar 

  • Haberhauer-Troyer C, Rosenberg E, Grasserbauer M (1999) Evaluation of solid-phase microextraction for sampling of volatile organic sulfur compounds in air for subsequent gas chromatographic analysis with atomic emission detection. J Chromatogr A 848:305–315

    Article  CAS  Google Scholar 

  • Jansen O, Raynaud C, Talou T, Gaset A (2003) Flavour profiling of protected black truffle flavourings issued from black truffle industry by-products. Flavour Research at the Dawn of the Twenty-First Century 638-641

  • Kleeberg KK, Liu Y, Jans M, Schlegelmilch M, Streese J, Stegmann R (2005) Development of a simple and sensitive method for the characterization of odorous waste gas emissions by means of solid-phase microextraction (SPME) and GC–MS/olfactometry. Waste Manage 25:872–879

    Article  CAS  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavors and fragrances. Appl Microbiol Biotechnol 49:1–8

    Article  CAS  Google Scholar 

  • Leffingwell JC, Leffingwell D (1991) GRAS flavor chemicals detection thresholds. Perfum Flavor 16:1–19

    CAS  Google Scholar 

  • Lestremau F, Andersson FAT, Desauziers V, Fanlo JL (2003a) Evaluation of solid-phase microextraction for time-weighted average sampling of volatile sulfur compounds at ppb concentrations. Anal Chem 75:2626–2632

    Article  CAS  Google Scholar 

  • Lestremau F, Desauziers V, Roux JC, Fanlo JL (2003b) Development of a quantification method for the analysis of malodorous sulphur compounds in gaseous industrial effluents by solid-phase microextraction and gas chromatography-pulsed flame photometric detection. J Chromatogr A 999:71–80

    Article  CAS  Google Scholar 

  • Li KC, Shooter D (2004) Analysis of sulfur-containing compounds in ambient air using solid-phase microextraction and gas chromatography with pulsed flame photometric detection. Int J Environ Anal Chem 84:749–760

    Article  CAS  Google Scholar 

  • Li DC, Liu RS, Li HM, Tang YJ (2012a) Ranking the significance of fermentation conditions on the aroma of Tuber melanosporum fermentation system by similarity analysis. Food Chem (in press)

  • Li YY, Wang G, Tang YJ (2012b) Volatile organic compounds from Tuber melanosporum fermentation system. Phytochemistry (in press)

  • Liu RS, Tang YJ (2010a) Tuber melanosporum fermentation medium optimization by Plackett–Burman design coupled with Draper–Lin small composite design and desirability function. Bioresour Technol 101:3139–3146

    Article  CAS  Google Scholar 

  • Liu RS, Tang YJ (2010b) Quantitative analysis for the effect of plant oil and fatty acid on Tuber melanosporum culture by uniform design combined with partial least squares regression. Appl Microbiol Biotechnol 87:1689–1697

    Article  CAS  Google Scholar 

  • Liu RS, Li DS, Li HM, Tang YJ (2008) Response surface modeling the significance of nitrogen source on the cell growth and Tuber polysaccharides production by submerged cultivation of Chinese truffle Tuber sinense. Process Biochem 43:868–876

    Article  CAS  Google Scholar 

  • Liu QN, Liu RS, Wang YH, Mi ZY, Li DS, Zhong JJ, Tang YJ (2009) Fed-batch fermentation of Tuber melanosporum for the hyperproduction of mycelia and bioactive Tuber polysaccharides. Bioresour Technol 100:3644–3649

    Article  CAS  Google Scholar 

  • March RE, Richards DS, Ryan RW (2006) Volatile compounds from six species of truffle—head-space analysis and vapor analysis at high mass resolution. Int J Mass Spectrom 249:60–67

    Article  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Pm C, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Jm A, Ballario P, Bolchi A, Brenna A, Brun A, Buee M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Sebastien Duplessis S, Stefano Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Ar V, Zambonelli A, Zampieri E, Henrissat B, Lebrun Mh, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  Google Scholar 

  • Mauriello G, Marino R, D’ Auria M, Cerone G, Rana GL (2004) Determination of volatile organic compounds from truffles via SPME–GC–MS. J Chromatogr Sci 42:299–305

    CAS  Google Scholar 

  • Mello A, Murat C, Bonfante P (2006) Truffles much more than a prized and local fungal delicacy. FEMS Microbiol Lett 260:1–8

    Article  CAS  Google Scholar 

  • Morawicki RO, Beelman RB (2008) Study of the biosynthesis of 1-octen-3-ol using a crude homogenate of Agaricus bisporus in a bioreactor. J Food Sci 73(3):135–139

    Article  Google Scholar 

  • Ney KH, Freytag WG (1980) Trüffel-Aroma (in German). Gordian 9:214

    Google Scholar 

  • Nielsen AT, Jonsson S (2002) Quantification of volatile sulfur compounds in complex gaseous matrices by solid-phase microextraction. J Chromatogr A 963:57–64

    Article  CAS  Google Scholar 

  • Piloni M, Tat L, Tonizzo A, Battistutta F (2005) Aroma characterisation of white truffle by GC–MS and GC–O. Ital J Food Sci 17(4):463–468

    CAS  Google Scholar 

  • Ras MR, Marcé RM, Borrull F (2008) Solid-phase microextraction–gas chromatography to determine volatile organic sulfur compounds in the air at sewage treatment plants. Talanta 77(2):774–778

    Article  CAS  Google Scholar 

  • Rothe M, Thomas B (1963) Aroma of bread. Evaluation of chemical taste analyses with the aid of threshold value. Lebensm, Z Unters Forsch 119: 302-310 (In German)

    Google Scholar 

  • Saison D, De Schutter DP, Delvaux F, Delvaux FR (2008) Optimisation of a complete method for the analysis of volatiles involved in the flavour stability of beer by solid-phase microextraction in combination with gas chromatography and mass spectrometry. J Chromatogr A 1190:342–349

    Article  CAS  Google Scholar 

  • Smit BA, Engels WJM, Wouters JTM, Smit G (2004) Diversity of L-leucine catabolism in various microorganisms involved in dairy fermentations, and identification of the rate-controlling step in the formation of the potent flavour component 3-methylbutanal. Appl Microbiol Biotechnol 64:396–402

    Article  CAS  Google Scholar 

  • Splivallo R, Bossi S, Maffei M, Bonfante P (2007) Discrimination of truffle fruiting-body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598

    Article  CAS  Google Scholar 

  • Talou T, Delmas M, Gaset A (1989) Direct capture of volatiles emitted from entire black Perigord truffle. J Essent Oil Res 1:281–286

    CAS  Google Scholar 

  • Talou T, Gaset A, Delmas M, Kulifaj M, Montant C (1990) Dimethyl sulphide: the secret for black truffle hunting by animals? Mycol Res 94:277–278

    Article  CAS  Google Scholar 

  • Tang YJ, Kong GP, Zhu LL, Liu RS, Li DS (2007a) Advances in studies on active constituents from truffle and its artificial cultivation. Chin Tradit Herb Drugs 8:629–632 (In Chinese)

    Google Scholar 

  • Tang YJ, Zhu LW, Li HM, Li DS (2007b) Submerged culture of mushrooms in bioreactors—challenges, current state-of-the-art, and future prospects. Food Technol Biotechnol 45:221–229

    CAS  Google Scholar 

  • Tang YJ, Zhu LL, Li DS, Mi ZY, Li HM (2008a) Significance of inoculation density and carbon source on the mycelial growth and Tuber polysaccharides production by submerged fermentation of Chinese truffle Tuber sinense. Process Biochem 43:576–586

    Article  CAS  Google Scholar 

  • Tang YJ, Zhu LL, Liu RS, Li HM, Li DS, Mi ZY (2008b) Quantitative response of cell growth and Tuber polysaccharides biosynthesis by medicinal mushroom Chinese truffle Tuber sinense to metal ion in culture medium. Bioresoure Technol 99:7606–7615

    Article  CAS  Google Scholar 

  • Tang YJ, Wang G, Li YY, Zhong JJ (2009) Fermentation condition outweighed truffle species in affecting volatile organic compounds analyzed by chromatographic fingerprint system. Anal Chim Acta 647:40–45

    Article  CAS  Google Scholar 

  • Ullrich F, Grosch W (1987) Identification of the most intensive volatile flavour compounds formed during autoxidation of linoleic acid. Z Lebensm Unters Forsch 184:277–282

    Article  CAS  Google Scholar 

  • Venkateshwarlu G, Chandravadana MV, Tewari RP (1999) Volatile flavour components of some edible mushrooms (Basidiomycetes). Flavour Fragr J 14:191–194

    Article  CAS  Google Scholar 

  • Wang G, Li YY, Li DS, Tang YJ (2008) Determination of 5α-androst-16-en-3α-ol in truffle fermentation broth by solid-phase extraction coupled with gas chromatography–flame ionization detector/electron impact mass spectrometry. J Chromatogr B 870:209–215

    Article  CAS  Google Scholar 

  • Wnouk S, Kinastowski S, Kaminski E (1983) Synthesis and analysis of 1-octen-3-ol, the main flavor component of mushrooms. Nahrung 27:479–486

    Article  Google Scholar 

  • Zeppa S, Gioacchini AM, Guidi C, Guescini M, Pierleoni R, Zambonelli A, Stocchi V (2004) Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18:199–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (NSFC, project nos. 20976038 and 21176059), the Key Project of Chinese Ministry of Education (project no. 210132), Hubei Provincial Natural Science Foundation for Innovative Research Team (project no. 2008CDA002), Hubei Provincial Natural Science Foundation for Agriculture, Scientific Research Key Project of Hubei Provincial Department of Education (project no. Z20101401), Discipline Leader Project of Wuhan Municipality (project no. 200951830553), Key Technology R&D Program of Wuhan Municipality (project no. 201120822280-2), the Open Project Programs for the Key Laboratory of Fermentation Engineering (Ministry of Education), the National Key Laboratory of Biochemical Engineering (project no. 2010KF-06), and the State Key Laboratory of Bioreactor Engineering are gratefully acknowledged. Ya-Jie Tang also thanks the Chutian Scholar Program (Hubei Provincial Department of Education, China) (2006) and Program for New Century Excellent Talents in University (NCET, 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Jie Tang.

Additional information

Rui-Sang Liu and Dao-Cheng Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, RS., Li, DC., Li, HM. et al. Evaluation of aroma active compounds in Tuber fruiting bodies by gas chromatography–olfactometry in combination with aroma reconstitution and omission test. Appl Microbiol Biotechnol 94, 353–363 (2012). https://doi.org/10.1007/s00253-011-3837-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3837-7

Keywords

Navigation