Skip to main content
Log in

Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Clostridium acetobutylicum JB200, a mutant strain of C. acetobutylicum ATCC 55025 obtained through strain evolution in a fibrous bed bioreactor, had high butanol tolerance and produced up to ~21 g/L butanol from glucose in batch fermentation, an improvement of ~67 % over the parental strain (~12.6 g/L). Comparative genomic analysis revealed a single-base deletion in the cac3319 gene leading to C-terminal truncation in its encoding histidine kinase (HK) in JB200. To study the effects of cac3319 mutation on cell growth and fermentation, the cac3319 gene in ATCC 55025 was disrupted using the ClosTron group II intron-based gene inactivation system. Compared to ATCC 55025, the cac3319 HK knockout mutant, HKKO, produced 44.4 % more butanol (18.2 ± 1.3 vs. 12.6 ± 0.2 g/L) with a 90 % higher productivity (0.38 ± 0.03 vs. 0.20 ± 0.02 g/L h) due to increased butanol tolerance, confirming, for the first time, that cac3319 plays an important role in regulating solvent production and tolerance in C. acetobutylicum. This work also provides a novel metabolic engineering strategy for generating high-butanol-tolerant and high-butanol-producing strains for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allcock ER, Reid SJ, Jones DT, Woods DR (1981) Autolytic activity and an autolysis-deficient mutant of Clostridium acetobutylicum. Appl Environ Microbiol 42:929–935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaker KV, Spitzer TR, Papoutsakis ET (2004) Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 186:1959–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105:1131–1147

    CAS  PubMed  Google Scholar 

  • Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73:3061–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borden JR, Jones SW, Indurthi D, Chen Y, Papoutsakis ET (2010) A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing. Metab Eng 12:268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50:1165–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CK, Blaschek HP (1999) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173

    Article  CAS  PubMed  Google Scholar 

  • Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14(6):630–641

    Article  CAS  PubMed  Google Scholar 

  • Croux C, Canard B, Goma G, Soucaille P (1992) Autolysis of Clostridium acetobutylicum ATCC 824. J Gen Microbiol 138:861–869

    Article  CAS  PubMed  Google Scholar 

  • Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648

    Article  Google Scholar 

  • Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  PubMed  Google Scholar 

  • Dürre P, Bohringer M, Nakotte S, Schaffer S, Thormann K, Zickner B (2002) Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. J Mol Microbiol Biotechnol 4:295–300

    PubMed  Google Scholar 

  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    Article  CAS  PubMed  Google Scholar 

  • Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Zhao H, Zhang G, He K, Jin Y (2012) Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE). Curr Microbiol 65(2):128–132

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S (2011) Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J 6:1348–1357

    Article  CAS  PubMed  Google Scholar 

  • Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67:1–11

    Article  CAS  PubMed  Google Scholar 

  • Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27:322–328

    Article  CAS  PubMed  Google Scholar 

  • Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184:3586–3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmanis MGN, Gatenbeck S (1984) Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47:1277–1283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Meth 70:452–464

    Article  CAS  Google Scholar 

  • Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Meth 78:79–85

    Article  CAS  Google Scholar 

  • Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Meth 80:49–55

    Article  CAS  Google Scholar 

  • Isar J, Rangaswamy V (2012) Improved n-butanol production by solvent tolerant Clostridium beijerinckii. Biomass Bioenergy 37:9–15

    Article  CAS  Google Scholar 

  • Jain MK, Beacom D, Datta R (1993) Mutant strain of C. acetobutylicum and process for making butanol. US 5192673A

  • Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY (2012a) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7:186–198

    Article  CAS  PubMed  Google Scholar 

  • Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung DY, Lee SY (2012b) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3(5):e00314-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang YS, Malaviya A, Lee SY (2013) Acetone–butanol–ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnol Bioeng 110:1646–1653

    Article  CAS  PubMed  Google Scholar 

  • Janssen H, Grimmler C, Ehrenreich A, Bahl H, Fischer R-J (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—solvent stress caused by a transient n-butanol pulse. J Biotechnol 161:354–365

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhao J, Wang Z, Yang ST (2014) Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations. Bioresour Technol 163:172–179

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88:1999–2012

    Article  CAS  Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228

    Article  CAS  PubMed  Google Scholar 

  • Lütke-Eversloh T (2014) Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 98:5823–5837

    Article  PubMed  Google Scholar 

  • Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647

    Article  PubMed  Google Scholar 

  • Mann MS, Dragovic Z, Schirrmacher G, Lütke-Eversloh T (2012) Overexpression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol Lett 34:1643–1649

    Article  CAS  PubMed  Google Scholar 

  • Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y (2010) Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9:3046–3061

    Article  CAS  PubMed  Google Scholar 

  • Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage Φ3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59:1077–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair RV, Green EM, Watson DE, Bennett GN, Papoutsakis ET (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181(1):319–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331

    Article  CAS  PubMed  Google Scholar 

  • Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429

    Article  CAS  PubMed  Google Scholar 

  • Paredes CJ, Alsaker KV, Papoutsakis ET (2005) A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3:969–978

    Article  CAS  PubMed  Google Scholar 

  • Perutka J, Wang W, Goerlitz D, Lambowitz AM (2004) Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol 336:421–439

    Article  CAS  PubMed  Google Scholar 

  • Ravagnani A, Jennert KCB, Steiner E, Grunberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Morris JG, Young M (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol Microbiol 37:1172–1185

    Article  CAS  PubMed  Google Scholar 

  • Schwarz KM, Kuit W, Grimmler C, Ehrenreich A, Kengen SWM (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—cellular behavior in adaptation to n-butanol. J Biotechnol 161:366–377

    Article  CAS  PubMed  Google Scholar 

  • Steiner E, Dago AE, Young DI, Heap JT, Minton NP, Hoch JA, Young M (2011) Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol Microbiol 80:641–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock JB, Surette MG, Levit M, Park P (1995) Two component signal transduction systems: structure-function relationships and mechanisms of catalysis. In Hoch JA, Silhavy (eds) Two component signal transduction. ASM Press, Washington DC, pp. 25–51

  • Sullivan L, Bennett GN (2006) Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. J Ind Microbiol Biotechnol 33:298–308

    Article  CAS  PubMed  Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186:2006–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Venkataramanan KP, Huang H, Papoutsakis ET, Wu CH (2013) Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. BMC Syst Biol 7:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolanin PM, Thomason PA, Stock JB (2002) Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 3:3013.1–3013.8

    Article  Google Scholar 

  • Xue C, Zhao X-Q, Liu CG, Chen L-J, Bai F-W (2013) Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 31:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Yang ST, Zhao J (2013) Adaptive engineering of Clostridium for increased butanol production, US Patent 8450093

  • Yu M, Zhang Y, Tang IC, Yang ST (2011) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13:373–382

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Lu C, Chen CC, Yang ST (2013) Biological production of butanol and higher alcohols, in Yang ST, El-Enshasy HA, Thongchul N (eds.) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals and polymers, Wiley, New York, pp. 235–261

  • Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36:1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Zingaro KA, Nicolaou SA, Papoutsakis ET (2013) Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing. Trends Biotechnol 31:643–653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation STTR program (Grant No. IIP-1026648). We would like to thank Prof. N.P. Minton and Dr. J.T. Heap (University of Nottingham, UK) for providing the plasmid pAN2 and Hopen Yang for copyediting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tian Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Zhao, J., Yu, L. et al. Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Appl Microbiol Biotechnol 99, 1011–1022 (2015). https://doi.org/10.1007/s00253-014-6249-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6249-7

Keywords

Navigation