Skip to main content

Advertisement

Log in

Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dental caries and periodontitis are common bacterial mouth infections. As a potentially attractive substitute for conventional antibiotics, antimicrobial peptides have been widely tested and used for controlling bacterial infections. In this study, we tested the efficacy of the peptides from the skin secretions of Rana chensinensis for killing several major cariogenic and periodontic pathogens as well as Candida albicans. L-K6, a temporin-1CEb analog, exhibited high antimicrobial activity against the tested oral pathogens and was able to inhibit Streptococcus mutans biofilm formation and reduce 1-day-old S. mutans biofilms with a minimum biofilm inhibitory concentration and reducing concentration of 3.13 and 6.25 μM, respectively. The results of confocal laser scanning microscopy demonstrated that the peptide significantly reduced cell viability within oral biofilms. Furthermore, as little as 5 μM L-K6 significantly inhibited lipopolysaccharide (LPS)- and interleukin-1β-induced productions of interleukin-8 and tumor necrosis factor-α from THP-1 monocytic cells. This anti-inflammatory activity is associated with the binding of L-K6 to LPS and neutralizing LPS-induced proinflammatory responses in THP-1 cells, as well as dissociating LPS aggregates. Our results suggest that L-K6 may have potential clinical applications in treating dental caries by killing S. mutans within dental plaque and acting as anti-inflammatory agents in infected tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn SJ, Wen ZT, Brady LJ, Burne RA (2008) Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun 76:4259–4268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Alhede M, Bjarnsholt T, Jensen PO (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155:3500–3508

    Article  PubMed  CAS  Google Scholar 

  • Beckloff N, Laube D, Castro T, Furgang D, Park S, Perlin D, Clements D, Tang H (2007) Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob Agents Chemother 51:4125–4132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Concannon SP, Crowe TD, Abercrombie JJ, Molina CM, Hou P, Sukumaran DK, Raj PA, Leung KP (2003) Susceptibility of oral bacteria to an antimicrobial decapeptide. J Med Microbiol 52:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:146–147

    Google Scholar 

  • Gilmore K, Chen P, Leung KP (2009) Anti-microbial peptides for plaque control and beyond. J Calif Dent Assoc 37:779–788

    PubMed  Google Scholar 

  • Graves DT, Cochran D (2003) The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol 74:391–401

    Article  PubMed  CAS  Google Scholar 

  • Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331–384

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herrera D, Alonso B, Leon R, Roldan S, Sanz M (2008) Antimicrobial therapy in periodontitis: the use of systemic antimicrobials against the subgingival biofilm. J Clin Periodontol 35:45–66

    Article  PubMed  CAS  Google Scholar 

  • Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI (2006) Bacterial interactions and successions during plaque development. Periodontol 42:47–79

    Article  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed Up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Le Roy D, Morand P, Lengacher S, Celio M, Grau GE, Glauser MP, Heumann D (1996) Streptococcus mitis cell walls and lipopolysaccharide induce lethality in D-galactosamine-sensitized mice by a tumor necrosis factor-dependent pathway. Infect Immun 64:1846–1849

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang L, Zhou X, Hu S, Zhang S, Wu H (2011) Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm. Int J Antimicrob Agents 37:33–38

    Article  PubMed  Google Scholar 

  • MacKay BJ, Denepitiya L, Iacono VJ, Krost SB, Pollock JJ (1984) Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutans. Infect Immun 44:695–701

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mant CT, Kovacs JM, Kim HM, Pollock DD, Hodges RS (2009) Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers 92:573–595

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32:7–15

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368

    Article  PubMed  CAS  Google Scholar 

  • Miyasaki KT, Bodeau AL, Selsted ME, Ganz T, Lehrer RI (1990) Killing of oral, gram-negative, facultative bacteria by the rabbit defensin, NP-1. Oral Microbiol Immunol 5:315–319

    Article  PubMed  CAS  Google Scholar 

  • Miyasaki KT, Iofel R, Lehrer RI (1997) Sensitivity of periodontal pathogens to the bactericidal activity of synthetic protegrins, antibiotic peptides derived from porcine leukocytes. J Dent Res 76:1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Mohanram H, Bhattacharjya S (2014) β-Boomerang antimicrobial and antiendotoxic peptides: lipidation and disulfide bond effects on activity and structure. Pharmaceuticals 7:482–501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Monroe D (2007) Looking for chinks in the armor of bacterial biofilms. PLoS Biol 5:307

    Article  Google Scholar 

  • Mosca DA, Hurst MA, So W, Viajar BS, Fujii CA, Falla TJ (2000) IB-367, a protegrin peptide with in vitro and in vivo activities against the microflora associated with oral mucositis. Antimicrob Agents Chemother 44:1803–1808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Natanson C, Danner RL, Elin RJ, Hosseini JM, Peart KW, Banks SM, MacVittie TJ, Walker RI, Parrillo JE (1989) Role of endotoxemia in cardiovascular dysfunction and mortality. Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock. J Clin Investig 83:243–251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pál T, Abraham B, Sonnevend Á, Juma P, Conlon JM (2006) Brevinin1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Int J Antimicrob Agents 27:525–529

    Article  PubMed  Google Scholar 

  • Rosenfeld Y, Shai Y (2006) Lipopolysaccharide (endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 1758:1513–1522

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld Y, Papo N, Shai Y (2006) Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J Biol Chem 281:1636–1643

    Article  PubMed  CAS  Google Scholar 

  • Sansom MS (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55:139–235

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, White SH (2008) Aggregation behavior of an ultra-pure lipopolysaccharide that stimulates TLR-4 receptors. Biophys J 95:986–993

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schmidtchen A, Malmsten M (2013) Peptide interactions with bacterial lipopolysaccharides. Curr Opin Colloid Interface Sci 18:381–392

    Article  CAS  Google Scholar 

  • Schuerholz T, Brandenburg K, Marx G (2012) Antimicrobial peptides and their potential application in inflammation and sepsis. Crit Care 16:207–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ (1990) Structure and function of lipopolysaccharide binding protein. Science 249:1429–1431

    Article  PubMed  CAS  Google Scholar 

  • Scott MG, Vreugdenhil AC, Buurman WA, Hancock RE, Gold MR (2000) Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol 164:549–553

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  • Shang DJ, Yu F, Li J, Zheng J, Zhang L, Li Y (2009) Molecular cloning of cDNAs encoding antimicrobial peptide precursors from the skin of the Chinese brown frog Rana chensinensis. Zoolog Sci 26:220–226

    Article  PubMed  CAS  Google Scholar 

  • Shang DJ, Li X, Sun Y, Wang C, Sun L, Wei S (2012a) Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, temporin-1CEb from Chinese brown frog, Rana chensinensis. Chem Biol Drug Des 79:653–662

    Article  PubMed  CAS  Google Scholar 

  • Shang DJ, Sun Y, Wang C, Wei S, Ma L, Sun L (2012b) Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis. Appl Microbiol Biotechnol 96:1551–1560

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Khan IA, Ali I, Ali F, Kumar M, Kumar A (2009) Evaluation of the antimicrobial, antioxidant, and anti-inflammatory activities of hydroxychavicol for its potential use as an oral care agent. Antimicrob Agents Chemother 53:216–222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med 189(11):1777–1782

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Silva BR, Freitas VAA, Nascimento-Neto LG, Carneiro VA, Arruda FVS, Aguiar ASW, Cavada BS, Teixeira EH (2012) Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: a review of the literature. Peptides 36:315–321

    Article  PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  PubMed  CAS  Google Scholar 

  • Wei GX, Campagna AN, Bobek LA (2006) Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother 57:1100–1109

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Rui T, Tong ZC, Ding YL, Rong K, Zhai SF, Liu J, Nia LX (2012) Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides 33:212–219

    Article  Google Scholar 

  • Wilson M (1996) Susceptibility of oral bacterial biofilms to antimicrobial agents. J Med Microbiol 44:79–87

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31272314 and No. 81202448), the Natural Science Foundation of Liaoning (Grant No. 201202121), and the Program for Liaoning Innovative Research Team in University (LT2012019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejing Shang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 716 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, D., Liang, H., Wei, S. et al. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. Appl Microbiol Biotechnol 98, 8685–8695 (2014). https://doi.org/10.1007/s00253-014-5927-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5927-9

Keywords

Navigation