Skip to main content
Log in

Combination of heterogeneous catalase and superoxide dismutase protects Bifidobacterium longum strain NCC2705 from oxidative stress

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bifidobacteria are generally sensitive to oxidative stress caused by reactive oxygen species (ROS). To improve oxidative-stress tolerance, the superoxide dismutase (SOD) gene from Streptococcus thermophilus (StSodA) and the heme-dependent catalase (KAT) gene from Lactobacillus plantarum (LpKatL) were heterologously expressed in Bifidobacterium longum strain NCC2705. Three types of strain NCC2705 transformants were obtained: with transgenic SOD expression, with transgenic KAT expression, and with coexpression of the two genes. Intracellular expression of the genes and their functional role in oxidative-stress resistance were evaluated. In response to oxidative stress, B. longum NCC2705/pDP401-LpKatL (expressing LpKatL) and NCC2705/pDP-Kat-Sod (coexpressing LpKatL and StSodA) rapidly degraded exogenous H2O2 and the peroxides generated as a byproduct of aerobic cultivation, preventing oxidative damage to DNA and RNA. Individual expression of StSodA or LpKatL both improved B. longum NCC2705 cell viability. Survival rate of strain NCC2705 was further improved by combining SOD and KAT expression. The two enzymes played complementary roles in ROS-scavenging pathways, and coexpression led to a synergistic beneficial effect under conditions of intensified oxidative stress. Our results illustrate that heterogeneous expression of heme-dependent KAT and Mn2+-dependent SOD is functional in the B. longum oxidative-stress response, and synergistic protection is achieved when their expressions are combined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abriouel H, Herrmann A, Stärke J, Yousif NMK, Wijaya A, Tauscher B, Holzapfel W, Franz CMAP (2004) Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microbiol 70:603–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achuthan AA, Duary RK, Madathil A, Panwar H, Kumar H, Batish VK, Grover S (2012) Antioxidative potential of lactobacilli isolated from the gut of Indian people. Mol Biol Rep 39:7887–7897

    Article  CAS  PubMed  Google Scholar 

  • An HR, Zhai ZY, Yin S, Luo YB, Han BZ, Hao YL (2011) Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus. J Agric Food Chem 59:3851–3856

    Article  CAS  PubMed  Google Scholar 

  • Andrus JM, Bowen SW, Klaenhammer TR, Hassan HM (2003) Molecular characterization and functional analysis of the manganese-containing superoxide dismutase gene (sodA) from Streptococcus thermophilus AO54. Arch Biochem Biophys 420:103–113

    Article  CAS  PubMed  Google Scholar 

  • Archibald FS, Fridovich I (1981) Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J Bacteriol 145:442–451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boylston TD, Vinderola CG, Ghoddusi HB, Reinheimer JA (2004) Incorporation of bifidobacteria into cheeses: challenges and rewards. Int Dairy J 14:375–387

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bruno-Bárcena JM, Andrus JM, Libby SL, Klaenhammer TR, Hassan HM (2004) Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol 70:4702–4710

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosgrove K, Coutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ (2007) Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol 189:1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501–514

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Maekawa I, Tanaka K, Ijyuin S, Shiwa Y, Suzuki I, Niimura Y, Kawasaki S (2013) Purification and characterization of oxygen-inducible haem catalase from oxygen-tolerant Bifidobacterium asteroides. Microbiology 159:89–95

    Article  CAS  PubMed  Google Scholar 

  • He JL, Sakaguchi K, Suzuki T (2012) Acquired tolerance to oxidative stress in Bifidobacterium longum 105-A via the expression of a catalase gene. Appl Environ Microbiol 78:2988–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki S, Mimura T, Satoh T, Takeda K, Niimura Y (2006) Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol 72:6854–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khokhlova EV, Efimov BA, Kafarskaia LI, Shkoporov AN (2010) Heterologous expression of secreted biologically active human interleukin-10 in Bifidobacterium breve. Arch Microbiol 192:769–774

    Article  CAS  PubMed  Google Scholar 

  • Klijn A, Moine D, Delley M, Mercenier A, Arigoni F, Pridmore RD (2006) Construction of a reporter vector for the analysis of Bifidobacterium longum promoters. Appl Environ Microbiol 72:7401–7405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    CAS  PubMed  Google Scholar 

  • Korshunov S, Imlay JA (2010) Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol 75:1389–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Hwang KT, Chung MY, Cho DH, Park CS (2005) Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): role for a metal ion chelating effect. J Food Sci 70:388–391

    Article  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • Messner KR, Imlay JA (1999) The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 274:10119–10128

    Article  CAS  PubMed  Google Scholar 

  • Oberg TS, Ward RE, Steele JL, Broadbent JR (2013) Genetic and physiological responses of Bifidobacterium animalis subsp. lactis to hydrogen peroxide stress. J Bacteriol 195:3743–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz L, Ruas-Madiedo P, Gueimonde M, de Los Reyes-Gavilán CG, Margolles A, Sánchez B (2011) How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr 6:307–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz L, Gueimonde M, Ruas-Madiedo P, Ribbera A, de los Reyes-Gavilán CG, Ventura M, Margolles A, Sánchez B (2012) Molecular clues to understand the aerotolerance phenotype of Bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 78:644–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson G, Herbert SK, Fork DC, Laudenbach DE (1994) Acclimation of the photosynthetic apparatus to growth irradiance in a mutant strain of Synechococcus lacking iron superoxide dismutase. Plant Physiol 105:287–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaver LC, Imlay JA (2004) Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J Biol Chem 279:48742–48750

    Article  CAS  PubMed  Google Scholar 

  • Shea RJ, Mulks MH (2002) Ohr, encoding an organic hydroperoxide reductase, is an in vivo-induced gene in Actinobacillus pleuropneumoniae. Infect Immun 70:794–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu N, Kobayashi K, Hayashi K (1984) The reaction of superoxide radical with catalase: mechanism of the inhibition of catalase by superoxide radical. J Biol Chem 259:4414–4418

    CAS  PubMed  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  • Steele KH, Baumgartner JE, Valderas MW, Martin Roop R II (2010) Comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus 2308. J Bacteriol 192:4912–4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  • Sun ZK, Baur A, Zhurina D, Yuan J, Riedel CU (2012) Accessing the inaccessible: molecular tools for bifidobacteria. Appl Environ Microbiol 78:5035–5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittenbury R (1964) Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J Gen Mirobiol 35:13–26

    Article  CAS  Google Scholar 

  • Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. In: Sies H (ed) Methods in enzymology: oxygen radicals in biological systems part C, Vol. 233. Academic Press, London, pp 182–189

    Google Scholar 

  • Wood NJ, Sørensen J (2001) Catalase and superoxide dismutase activity in ammonia-oxidising bacteria. FEMS Microbiol Ecol 38:53–58

    Article  CAS  Google Scholar 

  • Xiao M, Xu P, Zhao JY, Wang Z, Zuo FL, Zhang JW, Ren FZ, Li PL, Chen SW, Ma HQ (2011) Oxidative stress-related responses of Bifidobacterium longum subsp. longum BBMN68 at the proteomic level after exposure to oxygen. Microbiology 157:1573–1588

    Article  CAS  PubMed  Google Scholar 

  • Zuo FL, Feng XJ, Sun XF, Du C, Chen SW (2013) Characterization of plasmid pML21 of Enterococcus faecalis ML21 from koumiss. Curr Microbiol 66:103–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 31071507), the National High Technology Research and Development Program (“863” Program, No. 2008AA10Z310), and National Science and Technology Support Program of Ministry of Science and Technology of China (2012BAD28B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangwu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, F., Yu, R., Feng, X. et al. Combination of heterogeneous catalase and superoxide dismutase protects Bifidobacterium longum strain NCC2705 from oxidative stress. Appl Microbiol Biotechnol 98, 7523–7534 (2014). https://doi.org/10.1007/s00253-014-5851-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5851-z

Keywords

Navigation